浏览全部资源
扫码关注微信
1.天津大学 化工学院,天津 300350
2.中国北方发动机研究所 车用动力系统全国重点实验室,天津 300400
3.中国北方发动机研究所 结构技术部,天津 300400
蒲博闻,男,1993年生,天津人,博士,助理研究员;主要研究方向为材料强韧化理论及疲劳可靠性评价;E-mail:pubowen1993@163.com。
收稿日期:2024-08-27,
纸质出版日期:2025-09-15
移动端阅览
蒲博闻,孙兴悦,周田果,等. 基于自监督对抗训练算法的气缸盖铸铁材料热机械疲劳寿命预测研究[J]. 机械强度,2025,47(9):241-249.
PU Bowen,SUN Xingyue,ZHOU Tianguo,et al. Thermomechanical fatigue life prediction of cast iron materials for cylinder head based on self-supervision adversarial training algorithm[J]. Journal of Mechanical Strength,2025,47(9):241-249.
蒲博闻,孙兴悦,周田果,等. 基于自监督对抗训练算法的气缸盖铸铁材料热机械疲劳寿命预测研究[J]. 机械强度,2025,47(9):241-249. DOI: DOI:10.16579/j.issn.1001.9669.2025.09.024.
PU Bowen,SUN Xingyue,ZHOU Tianguo,et al. Thermomechanical fatigue life prediction of cast iron materials for cylinder head based on self-supervision adversarial training algorithm[J]. Journal of Mechanical Strength,2025,47(9):241-249. DOI: DOI:10.16579/j.issn.1001.9669.2025.09.024.
以气缸盖铸铁材料为研究对象,采用本体取样的方式进行了一系列不同温度范围下的热机械疲劳试验。结果表明,铸铁材料的疲劳试验表现出循环软化、循环稳定和快速失效3个阶段。此外,反相位加载下材料的疲劳寿命显著小于正相位加载。使用人工神经网络(Artificial Neural Network
ANN)、随机森林(Random Forest
RF)等6种典型有监督学习模型对试验数据进行疲劳寿命预测;结果表明,模型无法学习到材料的疲劳寿命分布趋势。针对该问题,利用基于生成对抗网络(Generative Adversarial Network
GAN)自监督算法,实现了对气缸盖铸铁材料热机械疲劳寿命的预测,在小样本条件下表现出了较好的预测效果。该研究对于开展气缸盖设计和疲劳分析有着极强的指导意义和参考价值。
Taking cast iron material of cylinder head as the research object
a series of thermo-mechanical fatigue experiments under different temperature ranges were conducted through bulk sampling. The results show that the fatigue test of cast iron materials exhibits three stages: cyclic softening
cyclic stability and rapid failure. Additionally
the fatigue life of materials under inverse phase loading is significantly shorter than that under positive phase loading. Six typical supervised learning models
including artificial neural networks (ANN) and random forest (RF)
were used to predict the fatigue life of the experimental data. However
the results indicate that these models failed to learn the fatigue life distribution trend of the materials. For this problem
the prediction of the thermal mechanical fatigue life of cast iron materials for cylinder heads was achieved by using the self-supervised algorithm based on the generative adversarial network (GAN)
and it showed a good prediction effect under the condition of small samples. This research has strong guiding significance and reference value for cylinder head design and fatigue analysis.
景国玺 , 张树勇 , 付文清 , 等 . 高强化柴油机铸铁缸盖承载特性研究 [J]. 车用发动机 , 2017 ( 1 ): 42 - 48 .
JING Guoxi , ZHANG Shuyong , FU Wenqing , et al . Loading characteristics of cast iron cylinder head for high-strength diesel engine [J]. Vehicle Engine , 2017 ( 1 ): 42 - 48 . (In Chinese)
任重 , 秦仙蓉 , 张氢 , 等 . 一种新的多轴疲劳寿命预测模型及其应用 [J]. 机械强度 , 2023 , 45 ( 3 ): 723 - 728 .
REN Zhong , QIN Xianrong , ZHANG Qing , et al . A new multiaxial fatigue life prediction model and its application [J]. Journal of Mechanical Strength , 2023 , 45 ( 3 ): 723 - 728 . (In Chinese)
汪凯 , 王艳军 , 陈明 . 发动机缸盖疲劳寿命预测研究 [C]// 中国汽车工程学会 . 2021中国汽车工程学会年会论文集( 3 ). 北京 : 机械工业出版社 , 2021 : 675 - 679 .
WANG Kai , WANG Yanjun , CHEN Ming . Research on fatigue life prediction of engine cylinder head [C]// Chinese Society of Automotive Engineers . Proceedings of the 2021 Annual Conference of the China Society of Automotive Engineers (Volume 3 ). Beijing : China Machine Press , 2021 : 675 - 679 . (In Chinese)
辛花 , 张自明 , 卫军朝 , 等 . 高承载铸铁气缸盖火力面结构抗疲劳设计 [J]. 机械设计与研究 , 2018 , 34 ( 3 ): 145 - 149 .
XIN Hua , ZHANG Ziming , WEI Junchao , et al . A study on the structure anti-fatigue design for the fire area of the iron casting cylinder under high load [J]. Machine Design & Research , 2018 , 34 ( 3 ): 145 - 149 . (In Chinese)
龚伟国 , 王艳军 , 陈明 . 发动机缸盖热机械疲劳及寿命预测研究 [J]. 上海汽车 , 2019 ( 5 ): 25 - 31 .
GONG Weiguo , WANG Yanjun , CHEN Ming . Research on thermal mechanical fatigue and life prediction of cylinder head [J]. Shanghai Auto , 2019 ( 5 ): 25 - 31 . (In Chinese)
韩振中 . 6110车用柴油机蠕铁缸盖生产技术 [J]. 现代铸铁 , 2008 , 28 ( 2 ): 15 - 18 .
HAN Zhenzhong . Production technology of vermicular iron cylinder head of 6110 vehicle diesel engine [J]. Modern Cast Iron , 2008 , 28 ( 2 ): 15 - 18 . (In Chinese)
姜爱龙 , 张孟枭 , 孟令健 , 等 . RuT400蠕墨铸铁热疲劳性能研究 [J]. 上海金属 , 2019 , 41 ( 6 ): 80 - 84 .
JIANG Ailong , ZHANG Mengxiao , MENG Lingjian , et al . Study on thermal fatigue properties of RuT400 vermicular graphite cast iron [J]. Shanghai Metals , 2019 , 41 ( 6 ): 80 - 84 . (In Chinese)
张俊红 , 徐喆轩 , 胡欢 , 等 . 热机耦合作用下发动机缸盖结构强度及疲劳研究 [J]. 汽车技术 , 2018 ( 7 ): 36 - 42 .
ZHANG Junhong , XU Zhexuan , HU Huan , et al . Structural strength and fatigue analysis of engine cylinder head under the thermo-mechanical coupling [J]. Automobile Technology , 2018 ( 7 ): 36 - 42 . (In Chinese)
周雪凯 , 薛冬新 , 殷玉龙 , 等 . 某柴油机气缸盖热机耦合强度分析 [J]. 内燃机与配件 , 2017 ( 3 ): 37 - 39 .
ZHOU Xuekai , XUE Dongxin , YIN Yulong , et al . Thermo-mechanical coupling strength analysis of diesel engine cylinder head [J]. Internal Combustion Engine & Parts , 2017 ( 3 ): 37 - 39 . (In Chinese)
CHEN J , LIU Y M . Fatigue modeling using neural networks:a comprehensive review [J]. Fatigue & Fracture of Engineering Materials & Structures , 2022 , 45 ( 4 ): 945 - 979 .
HAO W Q , TAN L , YANG X G , et al . A physics-informed machine learning approach for notch fatigue evaluation of alloys used in aerospace [J]. International Journal of Fatigue , 2023 , 170 : 107536 .
LIAN Z H , LI M J , LU W C . Fatigue life prediction of aluminum alloy via knowledge-based machine learning [J]. International Journal of Fatigue , 2022 , 157 : 106716 .
GAO J J , WANG C J , XU Z L , et al . Gaussian process regression based remaining fatigue life prediction for metallic materials under two-step loading [J]. International Journal of Fatigue , 2022 , 158 : 106730 .
GAN L , WU H , ZHONG Z . Fatigue life prediction considering mean stress effect based on random forests and kernel extreme learning machine [J]. International Journal of Fatigue , 2022 , 158 : 106761 .
HE L , WANG Z L , OGAWA Y , et al . Machine-learning-based investigation into the effect of defect/inclusion on fatigue behavior in steels [J]. International Journal of Fatigue , 2022 , 155 : 106597 .
WANG H J , LI B , GONG J G , et al . Machine learning-based fatigue life prediction of metal materials:perspectives of physics-informed and data-driven hybrid methods [J]. Engineering Fracture Mechanics , 2023 , 284 : 109242 .
DE N SANTOS F , D’ANTUONO P , ROBBELEIN K , et al . Long-term fatigue estimation on offshore wind turbines interface loads through loss function physics-guided learning of neural networks [J]. Renewable Energy , 2023 , 205 : 461 - 474 .
ZHOU T T , JIANG S , HAN T , et al . A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network [J]. International Journal of Fatigue , 2023 , 166 : 107234 .
WANG L Y , ZHU S P , LUO C Q , et al . Physics-guided machine learning frameworks for fatigue life prediction of AM materials [J]. International Journal of Fatigue , 2023 , 172 : 107658 .
CHEN D , LI Y Z , LIU K , et al . A physics-informed neural network approach to fatigue life prediction using small quantity of samples [J]. International Journal of Fatigue , 2023 , 166 : 107270 .
SUN X Y , ZHOU K , SHI S W , et al . A new cyclical generative adversarial network based data augmentation method for multiaxial fatigue life prediction [J]. International Journal of Fatigue , 2022 , 162 : 106996 .
LIANG W X , LOU M , WANG Y , et al . A fatigue crack growth prediction method on small datasets based on optimized deep neural network and Delaunay data augmentation [J]. Theoretical and Applied Fracture Mechanics , 2024 , 129 : 104218 .
KALAYCI C B , KARAGOZ S , KARAKAS Ö . Soft computing methods for fatigue life estimation:a review of the current state and future trends [J]. Fatigue & Fracture of Engineering Materials & Structures , 2020 , 43 ( 12 ): 2763 - 2785 .
MIRZA M , OSINDERO S . Conditional generative adversarial nets [J]. ArXiv e-Prints , 2014 :arXiv: 1411.1784 .
吴晟凯 , 邵星 , 王翠香 , 等 . 无监督领域自适应轴承故障诊断方法研究 [J]. 机械强度 , 2024 , 46 ( 3 ): 527 - 539 .
WU Shengkai , SHAO Xing , WANG Cuixiang , et al . Research on unsupervised domain adaptive bearing fault diagnosis method [J]. Journal of Mechanical Strength , 2024 , 46 ( 3 ): 527 - 539 . (In Chinese)
LEE H , LIM H J , SKINNER T , et al . Automated fatigue damage detection and classification technique for composite structures using Lamb waves and deep autoencoder [J]. Mechanical Systems & Signal Processing , 2022 , 163 : 108148 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构