浏览全部资源
扫码关注微信
1.武汉工程大学 电气信息学院,武汉 430205
2.中国地质大学(武汉) 机械与电子信息学院,武汉 430074]
3.中铁科工集团装备工程有限公司,武汉 430077
4.中国地质大学 深圳研究院,深圳 518057
叶新,男,2000年生,湖北仙桃人,在读硕士研究生;主要研究方向为人工智能、模式识别等;E-mail:yxwit@stu.wit.edu.cn。
收稿日期:2025-02-15,
纸质出版日期:2025-09-15
移动端阅览
叶新,苏少权,尚伟,等. 基于混合Wiener-ANN模型的轴承剩余使用寿命预测方法[J]. 机械强度,2025,47(9):233-240.
YE Xin,SU Shaoquan,SHANG Wei,et al. Bearing remaining useful life prediction method based on a hybrid Wiener-ANN model[J]. Journal of Mechanical Strength,2025,47(9):233-240.
叶新,苏少权,尚伟,等. 基于混合Wiener-ANN模型的轴承剩余使用寿命预测方法[J]. 机械强度,2025,47(9):233-240. DOI: DOI:10.16579/j.issn.1001.9669.2025.09.023.
YE Xin,SU Shaoquan,SHANG Wei,et al. Bearing remaining useful life prediction method based on a hybrid Wiener-ANN model[J]. Journal of Mechanical Strength,2025,47(9):233-240. DOI: DOI:10.16579/j.issn.1001.9669.2025.09.023.
轴承作为精密仪器中的关键旋转部件,其运行状态直接影响系统的安全性和稳定性,因此准确预测轴承剩余使用寿命尤为重要。现有的轴承剩余寿命预测方法可分为物理模型类和数据驱动类。物理模型方法具有较高的可解释性,所需样本量少,但预测精度较低,且不能在线预测;数据驱动方法则具有较高的预测精度和在线预测能力,但需要大量历史样本数据。为此,提出了结合物理模型和数据驱动方法的混合Wiener过程-人工神经网络(Wiener-Artificial Neural Network
Wiener-ANN)模型用于轴承剩余使用寿命预测。该模型通过时频域特征作为多源输入数据优化Wiener过程模型,使用优化后的模型进行第1阶段预测。随后,构建一个以第1阶段预测结果作为训练数据优化的三层ANN,将优化后的Wiener模型与ANN联合用于测试数据集的剩余寿命预测。与传统Wiener模型和ANN方法的预测结果对比表明,该方法在预测精度和应用性能上具有显著优势,具有较好的工程应用价值。
Bearings
as critical rotating components in precision instruments
directly affect the safety and stability of the system. Therefore
accurate prediction of their remaining useful life (RUL) is crucial. Existing RUL prediction methods for bearings can be classified into two types: physical model-based and data-driven approaches. Physical models offer high interpretability and require fewer samples but suffer from low prediction accuracy and cannot be used for online prediction. Data-driven methods
on the other hand
provide higher accuracy and support online prediction but require large amounts of data and have poor generalization ability under varying operating conditions or between different equipment. To address these limitations
a Wiener-ANN hybrid model is proposed for bearing RUL prediction
combining the advantages of both physical models and data-driven approaches. The model optimizes the Wiener process using time-frequency domain features as multi-source input data for the first-stage prediction. Subsequently
a three-layer artificial neural network (ANN) is trained using the first-stage prediction results to optimize the model. The optimized Wiener model is then combined with the ANN to predict the RUL of the test dataset. Comparisons with traditional Wiener models and ANN methods show that the proposed approach significantly outperforms these methods in prediction accuracy and application performance
demonstrating strong potential for engineering applications.
王英 , 顾欣 , 吕文元 . 基于BA-WPHM的滚动轴承两阶段剩余寿命预测方法 [J]. 计算机应用研究 , 2022 , 39 ( 1 ): 96 - 101 .
WANG Ying , GU Xin , LÜ Wenyuan . Two-stage remaining useful life prediction of rolling bearings based on BA-WPHM [J]. Application Research of Computers , 2022 , 39 ( 1 ): 96 - 101 . (In Chinese)
邹筱瑜 , 胡亮 , 王福利 , 等 . 基于信号分解深度网络的轴承剩余寿命预测 [J]. 仪器仪表学报 , 2024 , 45 ( 8 ): 45 - 57 .
ZOU Xiaoyu , HU Liang , WANG Fuli , et al . Bearing remaining useful life prediction based on signal decomposition embedding deep network [J]. Chinese Journal of Scientific Instrument , 2024 , 45 ( 8 ): 45 - 57 . (In Chinese)
徐浩 , 高乾 , 王铭榜 , 等 . 基于双通道回归融合网络的滚动轴承剩余寿命预测 [J]. 振动与冲击 , 2025 , 44 ( 4 ): 322 - 332 .
XU Hao , GAO Qian , WANG Mingbang , et al . Remaining useful life prediction of rolling bearings based on dual channel regression fusion network [J]. Journal of Vibration and Shock , 2025 , 44 ( 4 ): 322 - 332 . (In Chinese)
宋李俊 , 刘松林 , 辛玉 , 等 . 基于轴承退化状态评估和改进图注意力双向门控循环单元网络的轴承剩余寿命预测 [J]. 中国机械工程 , 2025 , 36 ( 7 ): 1562 - 1572 .
SONG Lijun , LIU Songlin , XIN Yu , et al . Bearing residual life prediction based on bearing degradation state evaluation and IGAT-BiGRU network [J]. China Mechanical Engineering , 2025 , 36 ( 7 ): 1562 - 1572 . (In Chinese)
第轩 , 肖旺 , 王庆锋 , 等 . 基于多模型融合的轴承剩余寿命预测方法 [J]. 计算机集成制造系统 , 2025 , 31 ( 7 ): 2412 - 2424 .
DI Xuan , XIAO Wang , WANG Qingfeng , et al . Bearing remaining life prediction method based on multi-model fusion [J]. Computer Integrated Manufacturing Systems , 2025 , 31 ( 7 ): 2412 - 2424 . (In Chinese)
者娜 , 杨剑锋 , 刘文彬 , 等 . KPCA和改进SVM在滚动轴承剩余寿命预测中的应用研究 [J]. 机械设计与制造 , 2019 ( 11 ): 1 - 4 .
ZHE Na , YANG Jianfeng , LIU Wenbin , et al . Research on application of KPCA and improved SVM in residual life prediction of rolling bearings [J]. Machinery Design & Manufacture , 2019 ( 11 ): 1 - 4 . (In Chinese)
高峰 , 曲建岭 , 袁涛 , 等 . 基于改进差分时域特征和深度学习优化的航空发动机剩余寿命预测算法 [J]. 电子测量与仪器学报 , 2019 , 33 ( 3 ): 21 - 28 .
GAO Feng , QU Jianling , YUAN Tao , et al . Optimized algorithm for aero-engine life prediction based on improved differential time-domain features and deep learning [J]. Journal of Electronic Mea-surement and Instrumentation , 2019 , 33 ( 3 ): 21 - 28 . (In Chinese)
MAO W T , HE J L , ZUO M J . Predicting remaining useful life of rolling bearings based on deep feature representation and transfer learning [J]. IEEE Transactions on Instrumentation and Measurement , 2019 , 69 ( 4 ): 1594 - 1608 .
FAN Y T , NOWACZYK S , RÖGNVALDSSON T . Transfer learning for remaining useful life prediction based on consensus self-organizing models [J]. Reliability Engineering & System Safety , 2020 , 203 : 107098 .
DE OLIVEIRA DA COSTA P R , AKÇAY A , ZHANG Y Q , et al . Remaining useful lifetime prediction via deep domain adaptation [J]. Reliability Engineering & System Safety , 2020 , 195 : 106682 .
AYE S A , HEYNS P S . An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission [J]. Mechanical Systems and Signal Processing , 2017 , 84 : 485 - 498 .
HE D J , TAO M Z . Statistical analysis for the doubly accelerated degradation Wiener model:an objective Bayesian approach [J]. Applied Mathematical Modelling , 2020 , 77 : 378 - 391 .
SONG K , SHI J , YI X J . A time-discrete and zero-adjusted gamma process model with application to degradation analysis [J]. Physica A:Statistical Mechanics and its Applications , 2020 , 560 : 125180 .
ZHANG Y , ZHANG S , WANG L . A weighted residual useful life prediction method for Weibull distribution model under multiple stress [C]// Proceeding of the 2019 Prognostics and System Health Management Conference (PHM-Qingdao) . New York : IEEE , 2019 : 1 - 5 .
李乃鹏 , 蔡潇 , 雷亚国 , 等 . 一种融合多传感器数据的数模联动机械剩余寿命预测方法 [J]. 机械工程学报 , 2021 , 57 ( 20 ): 29 - 37 .
LI Naipeng , CAI Xiao , LEI Yaguo , et al . A model-data-fusion remaining useful life prediction method with multi-sensor fusion for machinery [J]. Journal of Mechanical Engineering , 2021 , 57 ( 20 ): 29 - 37 . (In Chinese)
XU W Y , JIANG Q S , SHEN Y H , et al . New RUL prediction method for rotating machinery via data feature distribution and spatial attention residual network [J]. IEEE Transactions on Instrumentation and Measurement , 2023 , 72 : 3246526 .
陈伟 , 雷欢 , 裴婷婷 , 等 . 基于退化轨迹和Wiener模型的光伏组件剩余寿命预测方法 [J]. 太阳能学报 , 2023 , 44 ( 7 ): 175 - 181 .
CHEN Wei , LEI Huan , PEI Tingting , et al . Remaining life prediction method of photovoltaic modules based on degradation trajectory and Wiener model [J]. Acta Energiae Solaris Sinica , 2023 , 44 ( 7 ): 175 - 181 . (In Chinese)
李天梅 , 司小胜 , 刘翔 , 等 . 大数据下数模联动的随机退化设备剩余寿命预测技术 [J]. 自动化学报 , 2022 , 48 ( 9 ): 2119 - 2141 .
LI Tianmei , SI Xiaosheng , LIU Xiang , et al . Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data [J]. Acta Automatica Sinica , 2022 , 48 ( 9 ): 2119 - 2141 . (In Chinese)
岳辉 , 邵雯丽 , 田海 , 等 . 基于Wiener过程的设备剩余寿命预测与应用 [J]. 科学技术创新 , 2021 ( 21 ): 43 - 46 .
YUE Hui , SHAO Wenli , TIAN Hai , et al . Prediction and application of equipment residual life based on Wiener process [J]. Scientific and Technological Innovation , 2021 ( 21 ): 43 - 46 . (In Chinese)
陈胜 , 刘鹏飞 , 王平 , 等 . 基于LSTM人工神经网络的电力系统负荷预测方法 [J]. 沈阳工业大学学报 , 2024 , 46 ( 1 ): 66 - 71 .
CHEN Sheng , LIU Pengfei , WANG Ping , et al . Load forecasting method of power system based on LSTM artificial neural network [J]. Journal of Shenyang University of Technology , 2024 , 46 ( 1 ): 66 - 71 . (In Chinese)
杨志凌 , 刘俊华 . 基于数据融合和Wiener过程的风电轴承剩余寿命预测 [J]. 太阳能学报 , 2021 , 42 ( 10 ): 189 - 194 .
YANG Zhiling , LIU Junhua . Remaining life prediction of wind turbine bearings based on data fusion and Wiener processes [J]. Acta Energiae Solaris Sinica , 2021 , 42 ( 10 ): 189 - 194 . (In Chinese)
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构