浏览全部资源
扫码关注微信
火箭军工程大学,西安 710025
李梦草,女,1999年生,河南开封人,在读硕士研究生;主要研究方向为随机退化系统剩余寿命预测与健康管理;E-mail:dreamgrassli@foxmail.com。
收稿日期:2025-05-18,
修回日期:2025-08-01,
纸质出版日期:2025-09-15
移动端阅览
李梦草,张正新,司小胜,等. 基于非线性Wiener过程的多模式随机退化设备剩余使用寿命预测方法[J]. 机械强度,2025,47(9):221-232.
LI Mengcao,ZHANG Zhengxin,SI Xiaosheng,et al. Nonlinear-Wiener-process-based remaining useful life prediction method for stochastic deteriorating devices with multiple modes[J]. Journal of Mechanical Strength,2025,47(9):221-232.
李梦草,张正新,司小胜,等. 基于非线性Wiener过程的多模式随机退化设备剩余使用寿命预测方法[J]. 机械强度,2025,47(9):221-232. DOI: DOI:10.16579/j.issn.1001.9669.2025.09.022.
LI Mengcao,ZHANG Zhengxin,SI Xiaosheng,et al. Nonlinear-Wiener-process-based remaining useful life prediction method for stochastic deteriorating devices with multiple modes[J]. Journal of Mechanical Strength,2025,47(9):221-232. DOI: DOI:10.16579/j.issn.1001.9669.2025.09.022.
多模式随机退化设备剩余使用寿命(Remaining Useful Life
RUL)预测的难点在于建立一类能够刻画多种不同退化模式的随机退化模型,并求解多模式随机退化模型下设备的RUL分布。首先,建立了一类基于非线性Wiener过程的一般化随机退化模型,实现了多模式随机退化过程统一刻画。其次,提出了基于同类设备历史退化数据的模型参数极大似然估计(Maximum Likelihood Estimation
MLE)方法。再次,推导了首达时间意义下多模式随机退化设备RUL分布的概率密度函数(Probability Density Function
PDF)的解析近似解。最后,构建了模型参数更新的序贯贝叶斯架构,实现了在役设备RUL的在线预测。数值仿真分析及轴承RUL预测的应用实例表明,所提方法能够有效建模随机退化设备的多模式随机退化过程,并准确预测设备的RUL,为系统后续的维修决策提供预测信息依据。
The challenge in predicting the remaining useful life (RUL) of multi-mode stochastic degradation equipment lies in establishing a class of stochastic degradation models capable of characterizing multiple distinct degradation modes and deriving the remaining useful life distribution of the equipment under such multi-mode stochastic degradation models.First
a generalized stochastic degradation model based on the nonlinear Wiener process was developed
achieving a unified characterization of multi-mode stochastic degradation processes. Second
a maximum likelihood estimation (MLE) method for model parameters was proposed
utilizing historical degradation data from similar equipment. Third
an analytical approximate solution for the probability density function (PDF) of the remaining useful life distribution of multi-mode stochastic degradation equipment was derived under the first hitting time (FHT) framework. Finally
a sequential Bayesian framework for model parameter updating was constructed
enabling online prediction of the remaining useful life of in-service equipment.Numerical simulation analyses and an application case study on bearing remaining useful life prediction demonstrate that the proposed method can effectively model the multi-mode stochastic degradation processes of stochastic degradation equipment and accurately predict the remaining useful life
thereby providing predictive information to support subsequent maintenance decision-making for the system.
李天梅 , 司小胜 , 刘翔 , 等 . 大数据下数模联动的随机退化设备剩余寿命预测技术 [J]. 自动化学报 , 2022 , 48 ( 9 ): 2119 - 2141 .
LI Tianmei , SI Xiaosheng , LIU Xiang , et al . Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data [J]. Acta Automatica Sinica , 2022 , 48 ( 9 ): 2119 - 2141 . (In Chinese)
李乃鹏 , 蔡潇 , 雷亚国 , 等 . 一种融合多传感器数据的数模联动机械剩余寿命预测方法 [J]. 机械工程学报 , 2021 , 57 ( 20 ): 29 - 37 .
LI Naipeng , CAI Xiao , LEI Yaguo , et al . A model-data-fusion remaining useful life prediction method with multi-sensor fusion for machinery [J]. Journal of Mechanical Engineering , 2021 , 57 ( 20 ): 29 - 37 . (In Chinese)
KAMEI S , TAGHIPOUR S . A comparison study of centralized and decentralized federated learning approaches utilizing the trans-former architecture for estimating remaining useful life [J]. Reliability Engineering & System Safety , 2023 , 233 : 109130 .
ZIO E . Prognostics and Health Management (PHM):where are we and where do we (need to) go in theory and practice [J]. Reliability Engineering & System Safety , 2022 , 218 : 108119 .
吴定海 , 任国全 , 王怀光 , 等 . 基于卷积神经网络的机械故障诊断方法综述 [J]. 机械强度 , 2020 , 42 ( 5 ): 1024 - 1032 .
WU Dinghai , REN Guoquan , WANG Huaiguang , et al . The review of mechanical fault diagnosis methods based on convolutional neural network [J]. Journal of Mechanical Strength , 2020 , 42 ( 5 ): 1024 - 1032 . (In Chinese)
KHAN A , AZAD M M , SOHAIL M , et al . A review of physics-based models in prognostics and health management of laminated composite structures [J]. International Journal of Precision Engineer-ing and Manufacturing-Green Technology , 2023 , 10 ( 6 ): 1615 - 1635 .
钟建华 , 黄聪 , 钟舜聪 , 等 . 基于 t -SNE降维方法的滚动轴承剩余寿命预测 [J]. 机械强度 , 2024 , 46 ( 4 ): 969 - 976 .
ZHONG Jianhua , HUANG Cong , ZHONG Shuncong , et al . Remaining useful life of rolling bearing based on t -SNE [J]. Journal of Mechanical Strength , 2024 , 46 ( 4 ): 969 - 976 . (In Chinese)
冯磊 , 张正新 , 李天梅 , 等 . 数据驱动的闭环控制系统剩余寿命预测方法综述 [J]. 中北大学学报(自然科学版) , 2024 , 45 ( 1 ): 1 - 11 .
FENG Lei , ZHANG Zhengxin , LI Tianmei , et al . A review of data-driven remaining useful life prediction methods for closed-loop control system [J]. Journal of North University of China (Natural Science Edition) , 2024 , 45 ( 1 ): 1 - 11 . (In Chinese)
LI H Q , ZHANG Z X , LI T M , et al . A review on physics-informed data-driven remaining useful life prediction:challenges and opp-ortunities [J]. Mechanical Systems and Signal Processing , 2024 , 209 : 111120 .
DE BEAULIEU M H , JHA M S , GARNIER H , et al . Remaining useful life prediction based on physics-informed data augmentation [J]. Reliability Engineering & System Safety , 2024 , 252 : 110451 .
ZHANG Z X , SI X S , HU C H , et al . Degradation data analysis and remaining useful life estimation:a review on Wiener-process-based methods [J]. European Journal of Operational Research , 2018 , 271 ( 3 ): 775 - 796 .
GUAN Q L , WEI X K . The statistical data-driven remaining useful life prediction:a review on the Wiener process-based method [C]// 2023 Prognostics and Health Management Conference (PHM) . New York : IEEE , 2023 : 64 - 68 .
SI X S , CHEN M Y , WANG W B , et al . Specifying measurement errors for required lifetime estimation performance [J]. European Journal of Operational Research , 2013 , 231 ( 3 ): 631 - 644 .
GEBRAEEL N Z , LAWLEY M A , LI R , et al . Residual-life distributions from component degradation signals:a Bayesian approach [J]. IIE Transactions , 2005 , 37 ( 6 ): 543 - 557 .
HUANG Z Y , XU Z G , WANG W H , et al . Remaining useful life prediction for a nonlinear heterogeneous Wiener process model with an adaptive drift [J]. IEEE Transactions on Reliability , 2015 , 64 ( 2 ): 687 - 700 .
SI X S , LI T M , ZHANG J X , et al . Nonlinear degradation modeling and prognostics:a Box-Cox transformation perspective [J]. Reliability Engineering & System Safety , 2022 , 217 : 108120 .
YU W N , TU W B , KIM I Y , et al . A nonlinear-drift-driven Wiener process model for remaining useful life estimation considering three sources of variability [J]. Reliability Engineering & System Safety , 2021 , 212 : 107631 .
SI X S , WANG W B , HU C H , et al . Remaining useful life estimation based on a nonlinear diffusion degradation process [J]. IEEE Transactions on Reliability , 2012 , 61 ( 1 ): 50 - 67 .
ZHANG J X , HU C H , HE X , et al . A novel lifetime estimation method for two-phase degrading systems [J]. IEEE Transactions on Reliability , 2019 , 68 ( 2 ): 689 - 709 .
WEN Y X , WU J G , YUAN Y . Multiple-phase modeling of degradation signal for condition monitoring and remaining useful life prediction [J]. IEEE Transactions on Reliability , 2017 , 66 ( 3 ): 924 - 938 .
CHEN Z H , WU M , ZHAO R , et al . Machine remaining useful life prediction via an attention-based deep learning approach [J]. IEEE Transactions on Industrial Electronics , 2021 , 68 ( 3 ): 2521 - 2531 .
ELWANY A H , GEBRAEEL N Z . Sensor-driven prognostic models for equipment replacement and spare parts inventory [J]. IIE Trans-actions , 2008 , 40 ( 7 ): 629 - 639 .
YE Z S , SHEN Y , XIE M . Degradation-based burn-in with preventive maintenance [J]. European Journal of Operational Research , 2012 , 221 ( 2 ): 360 - 367 .
ZHANG J X , SI X S , DU D B , et al . Lifetime estimation for multi-phase deteriorating process with random abrupt jumps [J]. Sensors , 2019 , 19 ( 6 ): 1472 .
MELCHERS R E . Predicting long-term corrosion of metal alloys in physical infrastructure [J]. NPJ Materials Degradation , 2019 , 3 ( 1 ): 1 - 7 .
WANG D , TSUI K L . Two novel mixed effects models for progno-stics of rolling element bearings [J]. Mechanical Systems and Signal Processing , 2018 , 99 : 1 - 13 .
王宇 , 刘秋发 , 彭一真 . 非均匀监测条件下滚动轴承剩余寿命预测方法 [J]. 机械工程学报 , 2023 , 59 ( 23 ): 96 - 104 .
WANG Yu , LIU Qiufa , PENG Yizhen . A remaining useful life prediction approach with nonuniform monitoring conditions for rolling bearings [J]. Journal of Mechanical Engineering , 2023 , 59 ( 23 ): 96 - 104 . (In Chinese)
ZHANG K P , CHANG Z M , HAO S Y , et al . Nonlinear characteristics and analysis of an exponential variable cross-section beam-based micro-gyroscope with electrostatic driven [J]. Acta Mechanica Sinica , 2023 , 39 ( 3 ): 522371 .
ZHANG L J , MU Z Q , SUN C Y . Remaining useful life prediction for lithium-ion batteries based on exponential model and particle filter [J]. IEEE Access , 2018 , 6 : 17729 - 17740 .
李彦梅 , 刘惠汉 , 张朝龙 , 等 . 基于双高斯模型的锂电池剩余使用寿命预测方法 [J]. 电气工程学报 , 2022 , 17 ( 4 ): 32 - 40 .
LI Yanmei , LIU Huihan , ZHANG Chaolong , et al . Lithiumion battery RUL prediction method based on double Gaussian model [J]. Journal of Electrical Engineering , 2022 , 17 ( 4 ): 32 - 40 . (In Chinese)
司小胜 , 胡昌华 . 数据驱动的设备剩余寿命预测理论及应用 [M]. 北京 : 国防工业出版社 , 2016 : 159 .
SI Xiaosheng , HU Changhua . Data-driven remaining useful life prediction theory and applications for equipment [M]. Beijing : National Defense Industry Press , 2016 : 159 . (In Chinese)
ZHANG Z X , HU C H , SI X S , et al . Stochastic degradation process modeling and remaining useful life estimation with flexible random-effects [J]. Journal of the Franklin Institute , 2017 , 354 ( 6 ): 2477 - 2499 .
WANG X L , GUO B , CHENG Z J . Residual life estimation based on bivariate Wiener degradation process with time-scale transformations [J]. Journal of Statistical Computation and Simulation , 2014 , 84 ( 3 ): 545 - 563 .
李博阳 , 姚德臣 , 刘恒畅 , 等 . 基于双向堆叠简单循环单元的滚动轴承寿命预测 [J]. 机械强度 , 2021 , 43 ( 4 ): 786 - 792 .
LI Boyang , YAO Dechen , LIU Hengchang , et al . Life prediction of rolling bearing based on bidirectional stacking simple recurrent unit [J]. Journal of Mechanical Strength , 2021 , 43 ( 4 ): 786 - 792 . (In Chinese)
WANG B , LEI Y G , LI N P , et al . A hybrid prognostics approach for estimating remaining useful life of rolling element bearings [J]. IEEE Transactions on Reliability , 2020 , 69 ( 1 ): 401 - 412 .
MENG J D , YAN C F , CHEN G Y , et al . Health indicator of bearing constructed by RMS-CUMSUM and GRRMD-CUMSUM with multifeatures of envelope spectrum [J]. IEEE Transactions on Instrumentation and Measurement , 2021 , 70 : 3510216 .
MENG J D , YAN C F , WEN T , et al . Real-time identification of performance degradation stages of rolling element bearings by RVCFI [J]. Measurement Science and Technology , 2022 , 33 ( 8 ): 085021 .
王贡献 , 张腾 , 胡志辉 , 等 . 基于RMS子线区间拟合法的轴承剩余寿命预测 [J]. 噪声与振动控制 , 2024 , 44 ( 6 ): 165 - 171 .
WANG Gongxian , ZHANG Teng , HU Zhihui , et al . Bearing residual life prediction based on RMS sublinear interval fitting method [J]. Noise and Vibration Control , 2024 , 44 ( 6 ): 165 - 171 . (In Chinese)
WANG Z Q , HU C H , WANG W B , et al . An additive Wiener process-based prognostic model for hybrid deteriorating systems [J]. IEEE Transactions on Reliability , 2014 , 63 ( 1 ): 208 - 222 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构