浏览全部资源
扫码关注微信
1.上海交通大学 上海市复杂薄板结构数字化制造重点实验室,上海 200240
2.上海交通大学 机械系统与振动全国重点实验室,上海 200240
周翔宇,男,1999年生,河南信阳人,在读博士研究生;主要研究方向为金属多孔结构材料弹塑性力学行为;E-mail:sjtuzhouxy@sjtu.edu.cn。
收稿日期:2025-06-09,
修回日期:2025-07-21,
纸质出版日期:2025-09-15
移动端阅览
周翔宇,徐竹田,彭林法. FCC桁架式多孔结构的力学性能研究[J]. 机械强度,2025,47(9):72-79.
ZHOU Xiangyu,XU Zhutian,PENG Linfa. Research on the mechanical properties of FCC truss lattice structures[J]. Journal of Mechanical Strength,2025,47(9):72-79.
周翔宇,徐竹田,彭林法. FCC桁架式多孔结构的力学性能研究[J]. 机械强度,2025,47(9):72-79. DOI: DOI:10.16579/j.issn.1001.9669.2025.09.006.
ZHOU Xiangyu,XU Zhutian,PENG Linfa. Research on the mechanical properties of FCC truss lattice structures[J]. Journal of Mechanical Strength,2025,47(9):72-79. DOI: DOI:10.16579/j.issn.1001.9669.2025.09.006.
为了探究结构参数关键因素对多孔结构屈服强度和屈服行为的影响,制备了面心立方
(
Face Center Cubic
FCC)多孔结构,研究了桁架式多孔结构材料的力学强度与变形失效。构建了有限元仿真模型,分析了不同尺寸参数结构的屈服强度与失效形式,揭示了不同加载方向下单元杆件尺寸对FCC多孔材料逐层塌陷失效与整体屈服失效的转变关系。研究表明,细长比小的结构表现出整体屈服模式,反之表现为逐层压缩的屈服模式;此外,沿面对角线承载的材料能够获得更加均匀的整体变形模式,沿体对角线承载的材料局部变形更为明显。
To investigate the influence of structural parameters on the yield strength and deformation behavior of truss lattice structures
face-centered cubic (FCC) porous lattices were fabricated and the mechanical responses were systematically studied. A finite element model was developed to evaluate the yield strength and failure modes of structures with varying geometric parameters. The analysis revealed a correlation between the member slenderness ratio and the transition from progressive collapse to global yielding under different loading orientations. Structures with lower slenderness ratios tend to exhibit global yielding
while those with higher slenderness ratios are prone to layer-by-layer compression failure. Furthermore
lattices supported along the face diagonals demonstrate more uniform global deformation
whereas those supported along the body diagonals are characterized by localized deformation.
SRIVASTAVA M , RATHEE S . Additive manufacturing:recent trends,applications and future outlooks [J]. Progress in Additive Manufacturing , 2022 , 7 ( 2 ): 261 - 287 .
LIU Y B . Mechanical properties of a new type of plate-lattice structures [J]. International Journal of Mechanical Sciences , 2021 , 192 : 106141 .
KORKMAZ M E , GUPTA M K , ROBAK G , et al . Development of lattice structure with selective laser melting process:a state of the art on properties,future trends and challenges [J]. Journal of Manufacturing Processes , 2022 , 81 : 1040 - 1063 .
SORO N , BRODIE E G , ABDAL-HAY A , et al . Additive manufacturing of biomimetic titanium-tantalum lattices for biomedical implant applications [J]. Materials & Design , 2022 , 218 : 110688 .
SUN Z P , GUO Y B , SHIM V P W . Characterisation and modeling of additively-manufactured polymeric hybrid lattice structures for energy absorption [J]. International Journal of Mechanical Sciences , 2021 , 191 : 106101 .
ZHANG P J , YU P H , ZHANG R , et al . Grid octet truss lattice materials for energy absorption [J]. International Journal of Mechanical Sciences , 2023 , 259 : 108616 .
ZHOU Y , SHEN S P , LIU T , et al . Effective heat conduction evaluation of lattice structures from selective laser melting printing [J]. International Journal of Heat and Mass Transfer , 2024 , 218 : 124790 .
KEMERLI U , KAHVECI K . Conjugate forced convective heat transfer in a sandwich panel with a Kagome truss core:the effects of strut length and diameter [J]. Applied Thermal Engineering , 2020 , 167 : 114794 .
GUO J J , LI Y Q , XIAO Y , et al . Multiscale modeling and design of lattice truss core sandwich metastructures for broadband low-frequency vibration reduction [J]. Composite Structures , 2022 , 289 : 115463 .
KHAN N , RICCIO A . A systematic review of design for additive manufacturing of aerospace lattice structures:current trends and future directions [J]. Progress in Aerospace Sciences , 2024 , 149 : 101021 .
FERRO C G , VARETTI S , MAGGIORE P . Experimental evaluation of mechanical compression of lattice trusses made with Ti 6 Al 4 V for aerospace use [J]. Chinese Journal of Aeronautics , 2024 , 37 ( 5 ): 520 - 532 .
WANG C , ZHU J H , WU M Q , et al . Multi-scale design and optimization for solid-lattice hybrid structures and their application to aerospace vehicle components [J]. Chinese Journal of Aeronautics , 2021 , 34 ( 5 ): 386 - 398 .
SAJJAD U , REHMAN T U , ALI M , et al . Manufacturing and potential applications of lattice structures in thermal systems:a comprehensive review of recent advances [J]. International Journal of Heat and Mass Transfer , 2022 , 198 : 123352 .
YAN H B , WU W T , ZHAO Z Y , et al . Review and comparison of turbulent convective heat transfer in state-of-the-art 3D truss periodic cellular structures [J]. Applied Thermal Engineering , 2023 , 235 : 121450 .
JAM A , DU PLESSIS A , LORA C , et al . Manufacturability of lattice structures fabricated by laser powder bed fusion:a novel biomedical application of the beta Ti-21S alloy [J]. Additive Manufacturing , 2022 , 50 : 102556 .
FENG J W , LIU B , LIN Z W , et al . Isotropic octet-truss lattice structure design and anisotropy control strategies for implant application [J]. Materials & Design , 2021 , 203 : 109595 .
PRATAMA L K , SANTOSA S P , DIRGANTARA T , et al . Design and numerical analysis of electric vehicle Li-ion battery protections using lattice structure undergoing ground impact [J]. World Electric Vehicle Journal , 2022 , 13 ( 1 ): 10 .
WU W W , XIA R , QIAN G A , et al . Mechanostructures:rational mechanical design,fabrication,performance evaluation,and industrial application of advanced structures [J]. Progress in Materials Science , 2023 , 131 : 101021 .
SONG X H , ZENG C J , HU J Q , et al . Compressive behavior and energy absorption of novel body-centered cubic lattice metamaterials incorporating simple cubic truss units [J]. Composite Structures , 2025 , 367 : 119230 .
DONG L . Mechanical responses of snap-fit Ti-6Al-4V warren-truss lattice structures [J]. International Journal of Mechanical Sciences , 2020 , 173 : 105460 .
WANG S H , MA Y B , DENG Z C , et al . Two elastically equivalent compound truss lattice materials with controllable anisotropic mechanical properties [J]. International Journal of Mechanical Sciences , 2022 , 213 : 106879 .
LEE G , JEONG S G , KWON J , et al . Shear deformation behavior of additively manufactured 316L stainless steel lattice structures [J]. Additive Manufacturing , 2024 , 93 : 104425 .
MANDAL A , LI F , JIA X , et al . Compressive deformation behavior of functionally graded lattice structures of stainless steel 316L [J]. Journal of Materials Research and Technology , 2025 , 35 : 4599 - 4613 .
CHANG C , WU W , ZHANG H , et al . Mechanical characteristics of superimposed 316L lattice structures under static and dynamic loading [J]. Advanced Engineering Materials , 2021 , 23 ( 7 ): 2001536 .
WANG Z G , ZHOU Y , WANG X X , et al . Compression behavior of strut-reinforced hierarchical lattice:experiment and simulation [J]. International Journal of Mechanical Sciences , 2021 , 210 : 106749 .
ZHONG T L , HE K T , LI H X , et al . Mechanical properties of lightweight 316L stainless steel lattice structures fabricated by selective laser melting [J]. Materials & Design , 2019 , 181 : 108076 .
ARAGHI M , ROKHGIREH H , NAYEBI A . Experimental and FEM investigation of BCC lattice structure under compression test by using continuum damage mechanics with micro-defect closure effect [J]. Materials & Design , 2023 , 232 : 112125 .
LIANG Z L , CHEN X L , SUN Z G , et al . A study on the compressive mechanical properties of 316L diamond lattice structures manufactured by laser powder bed fusion based on actual relative density [J]. Journal of Manufacturing Processes , 2022 , 84 : 414 - 423 .
MORA S , PUGNO N M , MISSERONI D . 3D printed architected lattice structures by material jetting [J]. Materials Today , 2022 , 59 : 107 - 132 .
PARSOMPECH N , SUWANPREECHA C , NORAPHAIPHIPAKSA N , et al . Supportless lattice structure of 316L stainless steel fabricated by material extrusion additive manufacturing:effect of relative density on physical,microstructural and mechanical behaviour [J]. Materials Science and Engineering:A , 2024 , 915 : 147270 .
ZHAO Y H , SUN J , LI J F , et al . A comparative study on Johnson-Cook and modified Johnson-Cook constitutive material model to predict the dynamic behavior laser additive manufacturing FeCr alloy [J]. Journal of Alloys and Compounds , 2017 , 723 : 179 - 187 .
ZHONG H Z , SONG T T , LI C W , et al . The Gibson-Ashby model for additively manufactured metal lattice materials:its theoretical basis,limitations and new insights from remedies [J]. Current Opinion in Solid State and Materials Science , 2023 , 27 ( 3 ): 101081 .
MEZA L R , PHLIPOT G P , PORTELA C M , et al . Reexamining the mechanical property space of three-dimensional lattice architectures [J]. Acta Materialia , 2017 , 140 : 424 - 432 .
BHOI R M , KALURKAR P L G . Study of buckling behavior of beam and column [J]. IOSR Journal of Mechanical and Civil Engineering , 2014 , 11 ( 4 ): 36 - 40 .
GONG H J , SNELLING D , KARDEL K , et al . Comparison of stainless steel 316L parts made by FDM and SLM-based additive manufacturing processes [J]. JOM , 2019 , 71 ( 3 ): 880 - 885 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构