浏览全部资源
扫码关注微信
西南大学 工程技术学院,重庆 400100
付强,男,1999年生,四川广安人,硕士研究生;主要研究方向为压缩感知、信号处理、深度学习;E-mail:1248116740@qq.com。
收稿日期:2023-10-18,
修回日期:2023-12-06,
纸质出版日期:2025-06-15
移动端阅览
付强,胡东,杨童亮,等. 基于改进压缩感知与深度多核极限学习机的轴承故障诊断方法[J]. 机械强度,2025,47(6):48-56.
FU Qiang,HU Dong,YANG Tongliang,et al. Bearing fault diagnosis method based on improved compressed sensing and deep multi-kernel extreme learning machine[J]. Journal of Mechanical Strength,2025,47(6):48-56.
付强,胡东,杨童亮,等. 基于改进压缩感知与深度多核极限学习机的轴承故障诊断方法[J]. 机械强度,2025,47(6):48-56. DOI: DOI:10.16579/j.issn.1001.9669.2025.06.006.
FU Qiang,HU Dong,YANG Tongliang,et al. Bearing fault diagnosis method based on improved compressed sensing and deep multi-kernel extreme learning machine[J]. Journal of Mechanical Strength,2025,47(6):48-56. DOI: DOI:10.16579/j.issn.1001.9669.2025.06.006.
针对传统轴承故障诊断采样数据量大、诊断时间长和故障特征选择主观性强等问题,基于压缩感知(Compressed Sensing
CS)和深度多核极限学习机(Deep Multi-Kernel Extreme Learning Machine
DMKELM)理论,提出了CS-DMKELM滚动轴承智能诊断模型。首先,对变换域信号阈值处理得到稀疏信号,使用高斯随机矩阵作为测量矩阵,对处理后的数据进行压缩;其次,使用压缩后的数据作为DMKELM的输入信号,利用粒子群优化(Particle Swarm Optimization
PSO)算法对关键参数进行优化,实现故障的智能诊断。结果表明,所提方法可使用较少的轴承诊断数据,利用DMKELM从少量测量信号中自动提取轴承的特征信息,实现了轴承的快速故障诊断。在诊断时间0.55 s的情况下,最终识别准确率可达99.29%。所提方法不仅诊断时间更短,而且诊断精度较高,为处理海量轴承数据的故障诊断提供了新方法。
In response to challenges such as large sampling data
extended diagnosis time
and subjective fault feature selection in traditional bearing fault diagnosis
based on compressed sensing (CS) and deep multi-kernel extreme learning machine (D-MKELM) theory
a CS-DMKELM intelligent diagnosis model for rolling bearings was proposed. Firstly
sparse signals were obtained through threshold processing of transformed domain signals. A Gaussian random matrix was employed as the measurement matrix to compress the processed data. Secongly
the compressed data was used as the input signal for the D-MKELM. Particle swarm optimization (PSO) algorithm was applied to optimize critical parameters
enabling intelligent fault diagnosis. Results demonstrate that the proposed method
using only a small amount of bearing diagnostic data
automatically extracts feature information of bearings from a limited number of measurement signals through the D-MKELM. The proposed method enables rapid fault diagnosis of bearings. With a diagnostic time of 0.55 s
a final recognition accuracy of 99.29% was achieved. The proposed method reduces the diagnostic time and exhibits the high diagnostic accuracy
providing a new approach for handling massive bearing data in the fault diagnosis.
赵志宏 , 赵敬娇 , 魏子洋 . 基于BiLSTM的滚动轴承故障诊断研究 [J]. 振动与冲击 , 2021 , 40 ( 1 ): 95 - 101 .
ZHAO Zhihong , ZHAO Jingjiao , WEI Ziyang . Rolling bearing fault diagnosis based on BiLSM network [J]. Journal of Vibration and Shock , 2021 , 40 ( 1 ): 95 - 101 . (In Chinese)
马伦 , 康建设 , 孟妍 , 等 . 基于Morlet小波变换的滚动轴承早期故障特征提取研究 [J]. 仪器仪表学报 , 2013 , 34 ( 4 ): 920 - 926 .
MA Lun , KANG Jianshe , MENG Yan , et al . Research on feature extraction of rolling bearing incipient fault based on Morlet wavelet transform [J]. Chinese Journal of Scientific Instrument , 2013 , 34 ( 4 ): 920 - 926 . (In Chinese)
高峰 , 申江江 , 曲建岭 , 等 . 基于Hilbert边际谱和IPSO-SVDD的滚动轴承故障诊断 [J]. 电子测量与仪器学报 , 2017 , 31 ( 6 ): 892 - 898 .
GAO Feng , SHEN Jiangjiang , QU Jianling , et al . Rolling bearing fault diagnosis based on Hilbert marginal spectrum and IPSO-SVDD [J]. Journal of Electronic Measurement and Instrumentation , 2017 , 31 ( 6 ): 892 - 898 . (In Chinese)
武哲 , 杨绍普 , 刘永强 . 基于多元经验模态分解的旋转机械早期故障诊断方法 [J]. 仪器仪表学报 , 2016 , 37 ( 2 ): 241 - 248 .
WU Zhe , YANG Shaopu , LIU Yongqiang . Rotating machinery early fault diagnosis method based on multivariate empirical mode decomposition [J]. Chinese Journal of Scientific Instrument , 2016 , 37 ( 2 ): 241 - 248 . (In Chinese)
陈彦龙 , 张培林 , 徐超 , 等 . 基于DCT和EMD的滚动轴承故障诊断 [J]. 电子测量技术 , 2012 , 35 ( 2 ): 121 - 125 .
CHEN Yanlong , ZHANG Peilin , XU Chao , et al . Fault diagnosis of rolling bearing based on DCT and EMD [J]. Electronic Measurement Technology , 2012 , 35 ( 2 ): 121 - 125 . (In Chinese)
孟丽丽 , 郑磊 , 郑直 , 等 . 基于鲸鱼算法优化MLP的滚动轴承故障诊断 [J/OL]. 轴承 , 2023 : 1 - 10 [ 2023-10-17 ]. http://kns.cnki.net/kcms/detail/41.1148.TH.20230627.1618.006.html http://kns.cnki.net/kcms/detail/41.1148.TH.20230627.1618.006.html .
MENG Lili , ZHENG Lei , ZHENG Zhi , et al . Rolling bearing fault diagnosis based on WOA-MLP [J/OL]. Bearing , 2023 : 1 - 10 [ 2023-10-17 ]. http://kns.cnki.net/kcms/detail/41.1148.TH.20230627.1618.006.html. http://kns.cnki.net/kcms/detail/41.1148.TH.20230627.1618.006.html. (In Chinese)
徐涛 , 裴爱岭 , 刘勇 . 基于谐波小波包和SVM的滚动轴承故障诊断方法 [J]. 沈阳航空航天大学学报 , 2014 , 31 ( 4 ): 50 - 54 .
XU Tao , PEI Ailing , LIU Yong . Fault diagnosis of roller bearings with harmonic wavelet package and SVM [J]. Journal of Shenyang Aerospace University , 2014 , 31 ( 4 ): 50 - 54 . (In Chinese)
温江涛 , 闫常弘 , 孙洁娣 , 等 . 基于压缩采集与深度学习的轴承故障诊断方法 [J]. 仪器仪表学报 , 2018 , 39 ( 1 ): 171 - 179 .
WEN Jiangtao , YAN Changhong , SUN Jiedi , et al . Bearing fault diagnosis method based on compressed acquisition and deep learning [J]. Chinese Journal of Scientific Instrument , 2018 , 39 ( 1 ): 171 - 179 . (In Chinese)
陈万圣 , 王珍 , 赵洪健 , 等 . 基于压缩感知与改进的深度极限学习机的轴承故障诊断方法 [J]. 机械强度 , 2021 , 43 ( 4 ): 779 - 785 .
CHEN Wansheng , WANG Zhen , ZHAO Hongjian , et al . New method for bearing intelligent diagnosis based on compressed sensing and multilayer extreme learning machine [J]. Journal of Mechanical Strength , 2021 , 43 ( 4 ): 779 - 785 . (In Chinese)
HUANG G B , ZHU Q Y , SIEW C K . Extreme learning machine:theory and applications [J]. Neurocomputing , 2006 , 70 ( 1 ): 489 - 501 .
HUANG G B , ZHOU H M , DING X J , et al . Extreme learning machine for regression and multiclass classification [J]. IEEE Transactions on Systems,Man, and Cybernetics-Part B:Cybernetics , 2012 , 42 ( 2 ): 513 - 529 .
HUANG G B . An insight into extreme learning machines:random neurons,random features and kernels [J]. Cognitive Computation , 2014 , 6 ( 3 ): 376 - 390 .
KHATAB Z E , HAJIHOSEINI A , ALI GHORASHI S . A fingerprint method for indoor localization using autoencoder based deep extreme learning machine [J]. IEEE Sensors Letters , 2018 , 2 ( 1 ): 1 - 4 .
DONOHO D L . Compressed sensing [J]. IEEE Transactions on Information Theory , 2006 , 52 ( 4 ): 1289 - 1306 .
CANDÈS E J . The restricted isometry property and its implications for compressed sensing [J]. Comptes Rendus Mathematique , 2008 , 346 ( 9 ): 589 - 592 .
ELAD M , AHARON M . Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image Processing , 2006 , 15 ( 12 ): 3736 - 3745 .
许学斌 , 赵雨晴 , 路龙宾 , 等 . 基于LBP的粒子群优化混合核函数ELM的蔬菜水果图像分类方法 [J]. 机械设计与研究 , 2021 , 37 ( 4 ): 15 - 20 .
XU Xuebin , ZHAO Yuqing , LU Longbin , et al . Research on vegetable and fruit image classification method based on LBP particle swarm optimization mixed kernel function ELM [J]. Machine Design & Research , 2021 , 37 ( 4 ): 15 - 20 . (In Chinese)
李可军 , 徐延顺 , 魏本刚 , 等 . 基于PSO-HKELM的变压器顶层油温预测模型 [J]. 高电压技术 , 2018 , 44 ( 8 ): 2501 - 2508 .
LI Kejun , XU Yanshun , WEI Bengang , et al . Prediction model for top oil temperature of transformer based on hybrid kernel extreme learning machine trained and optimized by particle swarm optimization [J]. High Voltage Engineering , 2018 , 44 ( 8 ): 2501 - 2508 . (In Chinese)
刘明 , 周水生 , 吴慧 . 一种新的混合核函数支持向量机 [J]. 计算机应用 , 2009 , 29 ( B12 ): 167 - 168 .
LIU Ming , ZHOU Shuisheng , WU Hui . SVM based on new mixed kernel function [J]. Journal of Computer Applications , 2009 , 29 ( B12 ): 167 - 168 . (In Chinese)
胡志勇 , 牛家骅 , 郭丽娜 , 等 . 基于时域能量划分和PSO-SVM的发动机故障诊断 [J]. 汽车工程 , 2016 , 38 ( 1 ): 86 - 90 .
HU Zhiyong , NIU Jiahua , GUO Lina , et al . Engine fault diagnosis based on time-domain energy division and PSO-SVM algorithm [J]. Automotive Engineering , 2016 , 38 ( 1 ): 86 - 90 . (In Chinese)
SMITH W A , RANDALL R B . Rolling element bearing diagnostics using the case western reserve university data:a benchmark study [J]. Mechanical Systems and Signal Processing , 2015 , 64 : 100 - 131 .
0
浏览量
23
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构