浏览全部资源
扫码关注微信
西安建筑科技大学 机电工程学院,西安 710055
吴晓君,女,1964年生,陕西西安人,博士,教授,博士研究生导师;主要研究方向为先进制造技术;E-mail:wuxiaojun@xauat.edu.cn。
李渠伟,男,1999年生,陕西渭南人,在读硕士研究生;主要研究方向为机械设备状态监测及故障诊断;E-mail:2845576166@qq.com。
收稿日期:2023-07-27,
修回日期:2023-10-05,
纸质出版日期:2025-05-15
移动端阅览
吴晓君,李渠伟. 基于改进北方苍鹰算法优化SVM的轴承故障诊断研究[J]. 机械强度,2025,47(5):80-89.
WU Xiaojun,LI Quwei. Research on bearing fault diagnosis based on improved northern goshawk algorithm optimizing SVM[J]. Journal of Mechanical Strength,2025,47(5):80-89.
吴晓君,李渠伟. 基于改进北方苍鹰算法优化SVM的轴承故障诊断研究[J]. 机械强度,2025,47(5):80-89. DOI: DOI:10.16579/j.issn.1001.9669.2025.05.010.
WU Xiaojun,LI Quwei. Research on bearing fault diagnosis based on improved northern goshawk algorithm optimizing SVM[J]. Journal of Mechanical Strength,2025,47(5):80-89. DOI: DOI:10.16579/j.issn.1001.9669.2025.05.010.
针对群智能算法优化支持向量机(Support Vector Machine
SVM)模型时容易遭遇局部最优的问题,提出一种改进北方苍鹰优化(Improved Northern Goshawk Optimization
INGO)算法,并将其应用于滚动轴承的故障诊断。通过引入基于余弦变化的自适应惯性权重因子以及柯西变异策略来改进北方苍鹰优化(Northern Goshawk Optimization
NGO)算法,并结合SVM构建INGO-SVM故障诊断模型。为评估改进算法的性能,首先,使用基准测试函数进行了试验,并将改进算法与现有的NGO、粒子群优化(Particle Swarm Optimization
PSO)算法、麻雀搜索算法(Sparrow Search Algorithm
SSA)等进行比较,改进算法的性能在一定程度上有所提升。然后,通过小波包分解对原始诊断信号进行特征提取并划分出10种类别,使用第3层各频段的能量作为特征向量,输入到故障诊断模型;最后,比较了改进算法与其他3种算法在优化SVM参数进行故障分类时的性能。结果表明,改进算法能够有效准确地实现不同故障的分类,准确率可达99.39%,验证了该方法的有效性和可行性。
An improved northern goshawk optimization (INGO) algorithm was proposed to address the local optimization problem that swarm intelligence algorithms often encounter when optimizing support vector machine (SVM) models
and it was applied to fault diagnosis of rolling bearings. By introducing an adaptive inertia weight factor based on the cosine variation and a Cauchy mutation strategy
the northern goshawk optimization (NGO) algorithm was improved
and an INGO-SVM fault diagnosis model was constructed using SVM. In order to evaluate the performance of the improved algorithm
firstly
benchmark testing functions were used for experiments
and the improved algorithm was compared with existing optimization algorithms such as NGO
particle swarm optimization (PSO)
sparrow search algorithm (SSA)
etc. The results show that the performance of the improved algorithm is improved to a certain extent. At the same time
the original diagnostic signals were feature extracted through wavelet packet decomposition and divided into 10 categories. The energy of each frequency band in the 3rd layer was used as the feature vector and input into the fault diagnosis model. Finally
the performance of the improved algorithm was compared with the other three algorithms in optimizing SVM parameters for fault classification. The results show that the improved algorithm can effectively and accurately achieve different fault classifications
with an accuracy rate of 99.39%
verifying the effectiveness and feasibility of this method.
ZHANG Y , LÜ Y , GE M . Time-frequency analysis via comple-mentary ensemble adaptive local iterative filtering and enhanced maximum correlation kurtosis deconvolution for wind turbine fault diagnosis [J]. Energy Reports , 2021 , 7 : 2418 - 2435 .
RAI A , UPADHYAY S H . A review on signal processing tech-niques utilized in the fault diagnosis of rolling element bearings [J]. Tribology International , 2016 , 96 : 289 - 306 .
尹文哲 , 夏虹 , 彭彬森 , 等 . 基于CNN-SVM的核电厂轴承故障诊断方法 [J]. 哈尔滨工程大学学报 , 2023 , 44 ( 3 ): 410 - 417 .
YIN Wenzhe , XIA Hong , PENG Binsen , et al . Bearing fault diagnosis method in nuclear power plants based on CNN-SVM [J]. Journal of Harbin Engineering University , 2023 , 44 ( 3 ): 410 - 417 . (In Chinese)
李涛 , 段礼祥 , 张东宁 , 等 . 自适应卷积神经网络在旋转机械故障诊断中的应用 [J]. 振动与冲击 , 2020 , 39 ( 16 ): 275 - 282 .
LI Tao , DUAN Lixiang , ZHANG Dongning , et al . Application of adaptive convolutional neural network in rotating machinery fault diagnosis [J]. Journal of Vibration and Shock , 2020 , 39 ( 16 ): 275 - 282 . (In Chinese)
张钰 , 陈珺 , 王晓峰 , 等 . 随机森林在滚动轴承故障诊断中的应用 [J]. 计算机工程与应用 , 2018 , 54 ( 6 ): 100 - 104 .
ZHANG Yu , CHEN Jun , WANG Xiaofeng , et al . Application of random forest on rolling element bearings fault diagnosis [J]. Computer Engineering and Applications , 2018 , 54 ( 6 ): 100 - 104 . (In Chinese)
徐可 , 陈宗海 , 张陈斌 , 等 . 基于经验模态分解和支持向量机的滚动轴承故障诊断 [J]. 控制理论与应用 , 2019 , 36 ( 6 ): 915 - 922 .
XU Ke , CHEN Zonghai , ZHANG Chenbin , et al . Rolling bearing fault diagnosis based on empirical mode decomposition and support vector machine [J]. Control Theory & Applications , 2019 , 36 ( 6 ): 915 - 922 . (In Chinese)
赵春华 , 胡恒星 , 陈保家 , 等 . 基于深度学习特征提取和WOA-SVM状态识别的轴承故障诊断 [J]. 振动与冲击 , 2019 , 38 ( 10 ): 31 - 37 .
ZHAO Chunhua , HU Hengxing , CHEN Baojia , et al . Bearing fault diagnosis based on the deep learning feature extractionand WOA-SVM state recognition [J]. Journal of Vibration and Shock , 2019 , 38 ( 10 ): 31 - 37 . (In Chinese)
许迪 , 葛江华 , 王亚萍 , 等 . 量子遗传算法优化的SVM滚动轴承故障诊断 [J]. 振动.测试与诊断 , 2018 , 38 ( 4 ): 843 - 851 .
XU Di , GE Jianghua , WANG Yaping , et al . Rolling bearing fault diagnosis of SVM based on improved quantum genetic algorithm [J]. Journal of Vibration ,Measurement & Diagnosis, 2018 , 38 ( 4 ): 843 - 851 . (In Chinese)
李昕燃 , 靳伍银 . 基于改进麻雀算法优化支持向量机的滚动轴承故障诊断研究 [J]. 振动与冲击 , 2023 , 42 ( 6 ): 106 - 114 .
LI Xinran , JIN Wuyin . Fault diagnosis of rolling bearings based on ISSA-SVM [J]. Journal of Vibration and Shock , 2023 , 42 ( 6 ): 106 - 114 . (In Chinese)
吐松江·卡日 , 高文胜 , 张紫薇 , 等 . 基于支持向量机和遗传算法的变压器故障诊断 [J]. 清华大学学报(自然科学版) , 2018 , 58 ( 7 ): 623 - 629 .
KARI·Tusongjiang , GAO Wensheng , ZHANG Ziwei , et al . Power transformer fault diagnosis based on a support vector machine and a genetic algorithm [J]. Journal of Tsinghua University (Science and Technology) , 2018 , 58 ( 7 ): 623 - 629 . (In Chinese)
唐贵基 , 田甜 , 庞彬 . 基于快速谱相关和PSO-SVM的变工况滚动轴承状态识别 [J]. 电力自动化设备 , 2019 , 39 ( 7 ): 168 - 174 .
TANG Guiji , TIAN Tian , PANG Bin . State identification of rolling bearing under variable working condition based on fast spectral correlation and PSO-SVM [J]. Electric Power Automation Equipment , 2019 , 39 ( 7 ): 168 - 174 . (In Chinese)
章涛 , 陈勇旗 , 廖紫洋 , 等 . 一种北方苍鹰参数优化的VMD-MRE轴承故障诊断方法 [J/OL]. 机械科学与技术 : 1 - 8 ( 2023-04-26 )[ 2023-07-22 ]. https://doi.org/10.13433/j.cnki.1003-8728.20230226 https://doi.org/10.13433/j.cnki.1003-8728.20230226 .
ZHANG Tao , CHEN Yongqi , LIAO Ziyang , et al . A VMD-MRE bearing fault diagnosis method for optimizing the parameters of northern hawks [J/OL]. Mechanical Science and Technology for Aerospace Engineering : 1 - 8 ( 2023-04-26 )[ 2023-07-22 ]. https://doi.org/10.13433/j.cnki.1003-8728.20230226. https://doi.org/10.13433/j.cnki.1003-8728.20230226. (In Chinese)
EL-DABAH M A , EL-SEHIEMY R A , HASANIEN H M , et al . Photovoltaic model parameters identification using northern goshawk optimization algorithm [J]. Energy , 2023 , 262 : 125522 .
DEHGHANI M , HUBALOVSKY S , TROJOVSKY P . Northern goshawk optimization: a new swarm-based algorithm for solving optimization problems [J]. IEEE Access , 2021 , 9 : 162059 - 162080 .
LI K , HUANG H S , FU S W , et al . A multi-strategy enhanced northern goshawk optimization algorithm for global optimization and engineering design problems [J]. Computer Methods in Applied Mechanics and Engineering , 2023 , 415 : 116199 .
刘翕铭 , 于永进 , 杨洋 . 基于改进麻雀算法的园区综合能源系统优化研究 [J]. 智慧电力 , 2021 , 49 ( 6 ): 9 - 16 .
LIU Ximing , YU Yongjin , YANG Yang . Optimization of regional integrated energy system based on improved sparrow algorithm [J]. Smart Power , 2021 , 49 ( 6 ): 9 - 16 . (In Chinese)
李爱莲 , 全凌翔 , 崔桂梅 , 等 . 融合正余弦和柯西变异的麻雀搜索算法 [J]. 计算机工程与应用 , 2022 , 58 ( 3 ): 91 - 99 .
LI Ailian , QUAN Lingxiang , CUI Guimei , et al . Sparrow search algorithm combining sine-cosine and Cauchy mutation [J]. Compu-ter Engineering and Applications , 2022 , 58 ( 3 ): 91 - 99 . (In Chinese)
李斌 , 郭自强 , 高鹏 . 改进北方苍鹰算法在光伏阵列中应用研究 [J]. 电子测量与仪器学报 , 2023 , 37 ( 7 ): 131 - 139 .
LI Bin , GUO Ziqiang , GAO Peng . Application of improved northern goshawk optimization algorithm in photovoltaic array [J]. Journal of Electronic Measurement and Instrumentation , 2023 , 37 ( 7 ): 131 - 139 . (In Chinese)
KASHEF R . A boosted SVM classifier trained by incremental learning and decremental unlearning approach [J]. Expert Systems with Applications , 2021 , 167 : 114154 .
YANG L Y , ZHANG K , CHEN Z H , et al . Fault diagnosis of WOA-SVM high voltage circuit breaker based on PCA principal component analysis [J]. Energy Reports , 2023 , 9 ( 8 ): 628 - 634 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构