浏览全部资源
扫码关注微信
1.华东交通大学 轨道交通基础设施性能监测与保障国家重点实验室,南昌 330013
2.华东交通大学 载运工具与装备教育部重点实验室,南昌 330013
3.机车车辆智能运维铁路行业重点实验室,南昌 330013
4.中国铁路西安局集团有限公司西安机务段,西安 710000
5.中国铁路太原局集团有限公司,太原 030013
谭荣凯,男,1990年生,江西丰城人,博士,讲师,硕士研究生导师;主要研究方向为轨道车辆关键部件服役性能;E-mail:tanrongkai17@163.com。
纸质出版日期:2025-01-15,
收稿日期:2023-11-13,
修回日期:2024-02-22,
移动端阅览
林凤涛, 王子旭, 谭荣凯, 等. 钢轨不平顺焊接区的磨耗及裂纹萌生预测[J]. 机械强度, 2025,47(1):146-154.
LIN FENGTAO, WANG ZIXU, TAN RONGKAI, et al. Wear and crack initiation prediction of rail irregularity welding zone. [J]. Journal of mechanical strength, 2025, 47(1): 146-154.
为探究钢轨焊接区的磨耗及裂纹萌生与轴重及摩擦因数的关系,通过对大量不平顺焊接区的实地测量,拟合了两种典型焊接区的不平顺数据,建立了上凸和下凹两类典型焊接区不平顺轮轨接触的有限元模型。结合摩擦功模型和Archard磨耗理论,对焊接区最大磨耗截面进行预测,基于Jiang-Sehitoglu模型对焊接区裂纹萌生寿命进行预测。发现随着轴重的增加,上凸及下凹焊接区的磨耗速率均增大;且轴重达到16 t时上凸型焊接区磨耗速率显著增大,而下凹型焊接区在轴重达到18 t时磨耗速率显著增大;摩擦因数从0.2增加到0.35,上凸和下凹两类焊接区最大磨耗量分别为1.93 mm、1.08 mm;且上凸型焊接区磨耗速率在摩擦因数为0.3时显著增大,而下凹型焊接区磨耗速率在摩擦因数为0.35时显著增大。轴重从12 t增加到18 t,上凸型焊接区服役寿命的衰减幅度较小,而下凹型焊接区服役寿命衰减幅度较大。此外,当摩擦因数从0.2增加至0.35时,其对上凸型焊接区服役寿命的影响明显小于轴重(12~18 t)的影响。然而,当摩擦因数从0.2增加至0.35时,其对下凹型焊接区服役寿命的影响与轴重(12~18 t)的影响相当。结果表明,随着轴重和摩擦因数的增加,对钢轨焊接区下凹型不平顺的寿命影响更加显著;在工务维护过程中,应着重关注下凹型焊接区的出现并及时标记和修复。
In order to investigate the relation between abrasion and crack initiation in the welded zone of rails and axle weight and friction coefficient
through the field measurement of a large number of uneven weld zones
two kinds of typical weld zone uneven data were fitted
and two kinds of typical uneven wheel-rail contact finite element models of upper convex and lower concave weld zones were established. Combined with the friction work model and Archard wear theory
the maximum wear cross section of the welded zone was predicted
and the crack initiation life of the welded zone was predicted based on the Jiang-Sehitoglu model. It is found that with the increase of axle load
the abrasion rate of both the upper convex and lower concave weld zone increases
and the abrasion rate of the upper convex weld zone increases significantly when the axle load reaches 16 t
while the abrasion rate of the lower concave weld zone increases significantly when the axle load reaches 18 t. When the friction coefficient increases from 0.2 to 0.35
the maximal abrasion amount of the two types of weld zones of the upper convex and the lower concave is 1.93 mm and 1.08 mm
respectively. The abrasion rate of the upper convex type increases significantly at a friction coefficient of 0.3
while the abrasion rate of the lower concave type increases significantly at a coefficient of 0.35. When the axle load increases from 12 t to 18 t
the service life of the upper convex weld zone decreases less
while the service life of the lower concave weld zone decreases more. In addition
when the friction coefficient is increased from 0.2 to 0.35
its effect on the service life of the upper convex weld zone is significantly smaller than that of the axle load (12-18 t). However
when the friction coefficient is increased from 0.2 to 0.35
the effect on the service life of the lower concave weld zone is comparable to that of the axle load (12-18 t). The results show that with the increase of axle load and friction coefficient
the influence of concave irregularity on the life of rail welding zone is more significant. In the process of engineering maintenance
we should pay attention to the appearance of concave welding zone and mark and repair it in time.
铁道工程轮轨关系磨耗预测裂纹萌生预测
Railway engineeringWheel-rail relationWear predictionCrack initiation prediction
陈嵘,孙耀亮,安博洋,等.钢轨焊接接头不平顺演变条件下的轮轨接触分析[J].铁道标准设计,2023,67(2):37-42.
CHEN Rong,SUN Yaoliang,AN Boyang,et al.Wheel-rail contact analysis under the evolution of rail joint’s geometry irregularity[J].Railway Standard Design,2023,67(2):37-42.(In Chinese)
魏子龙,刘丙强,杨飞,等.轨枕空吊对钢轨焊接不平顺区轮轨接触的影响[J].同济大学学报(自然科学版),2021,49(4):517-525.
WEI Zilong,LIU Bingqiang,YANG Fei,et al.Influence of unsupported sleeper on wheel-rail contact at rail weld irregularity[J].Journal of Tongji University (Natural Science),2021,49(4):517-525.(In Chinese)
KORO K,ABE K,ISHIDA M,et al.Timoshenko beam finite element for vehicle—track vibration analysis and its application to jointed railway track[J].Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2004,218(2):159-172.
马晓川,刘林芽,张鹏飞,等.近场动力学框架下钢轨疲劳裂纹萌生预测的数值方法研究[J].摩擦学学报,2020,40(5):608-614.
MA Xiaochuan,LIU Linya,ZHANG Pengfei,et al.Numerical method for predicting rail fatigue crack initiation with peridynamic theory[J].Tribology,2020,40(5):608-614.(In Chinese)
MUTTON P J,ALVAREZ E F.Failure modes in aluminothermic rail welds under high axle load conditions[J].Engineering Failure Analysis,2004,11(2):151-166.
顾颖,冯倩,任松波,等.焊接残余应力对对接接头疲劳裂纹扩展的影响[J].铁道科学与工程学报,2021,18(10):2752-2760.
GU Ying,FENG Qian,REN Songbo,et al.Effects of welding residual stresses on fatigue crack growth behavior of butt joint[J].Journal of Railway Science and Engineering,2021,18(10):2752-2760.(In Chinese)
金学松,张继业,温泽峰,等.轮轨滚动接触疲劳现象分析[J].机械强度,2002,24(2):250-257.
JIN Xuesong,ZHANG Jiye,WEN Zefeng,et al.Overview of phenomena of rolling contact fatigue of wheel/rail[J].Journal of Mechanical Strength,2002,24(2):250-257.(In Chinese)
丁韦,李力,李金华,等.重载铁路钢轨焊接接头磨耗特征研究[J].铁道建筑,2012,52(11):119-123.
DING Wei,LI Li,LI Jinhua,et al.Wear characteristics and countermeasures of rail welded joint for heavy haul railway[J].Railway Engineering,2012,52(11):119-123.(In Chinese)
向鹏程,蒋文娟,丁昊昊,等.两种热处理钢轨焊接接头冲击磨损与损伤性能研究[J].摩擦学学报,2021,41(3):382-392.
XIANG Pengcheng,JIANG Wenjuan,DING Haohao,et al.Investigation on impact wear and damage properties of rail welded joints after two types of heat-treatments[J].Tribology,2021,41(3):382-392.(In Chinese)
MA N S,CAI Z P,HUANG H,et al.Investigation of welding residual stress in flash-butt joint of U71Mn rail steel by numerical simulation and experiment[J].Materials & Design,2015,88:1296-1309.
李霞,吴磊,温泽峰,等.钢弹簧浮置板轨道焊接接头处钢轨波磨研究Ⅰ:初始演化[J].机械工程学报,2023,59(8):245-252.
LI Xia,WU Lei,WEN Zefeng,et al.Study on the rail corrugation at weld joint of steel spring floating slab track Ⅰ:initial evolution[J].Journal of Mechanical Engineering,2023,59(8):245-252.(In Chinese)
黄彩虹,罗仁,曾京,等.系统参数对高速列车车轮踏面凹陷磨耗的影响[J].交通运输工程学报,2016,16(3):55-62.
HUANG Caihong,LUO Ren,ZENG Jing,et al.Effect of system parameters on tread-hollow wear of high-speed train wheels[J].Journal of Traffic and Transportation Engineering,2016,16(3):55-62.(In Chinese)
LEWIS R,OLOFSSON U.Mapping rail wear regimes and transitions[J].Wear,2004,257(7/8):721-729.
肖乾.轮轨滚动接触弹塑性分析及疲劳损伤研究[D].北京:中国铁道科学研究院,2012:9.
XIAO Qian.The elasto-plastic analysis and fatigue damage research of wheel/rail rolling contact[D].Beijing:China Academy of Railway Sciences,2012:9.(In Chinese)
王军平,周宇,沈钢.钢轨硬度对疲劳裂纹萌生和钢轨磨耗的影响[J].西南交通大学学报,2021,56(3):611-618.
WANG Junping,ZHOU Yu,SHEN Gang.Effect of rail hardness on fatigue cracks initiation and rail wear[J].Journal of Southwest Jiaotong University,2021,56(3):611-618.(In Chinese)
DENG T S,ZHAO X,WU B,et.al.Prediction of crack initiation of rail rolling contact fatigue[J].Applied Mechanics and Materials,2013,344:75-82.
李伟,周志军,温泽峰,等.轮轨非稳态载荷下钢轨疲劳裂纹萌生分析[J].机械工程学报,2023,59(18):283-293.
LI Wei,ZHOU Zhijun,WEN Zefeng,et al.Analysis of rail fatigue crack initiation under nonsteady state loading of wheel-rail[J].Journal of Mechanical Engineering,2023,59(18):283-293.(In Chinese)
RIBEAUCOURT R,BAIETTO-DUBOURG M C,GRAVOUIL A.A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method[J].Computer Methods in Applied Mechanics and Engineering,2007,196(33/34):3230-3247.
张军,刘佳欢,王雪萍,等.基于有限元摩擦功计算的钢轨磨耗预测方法[J].机械工程学报,2019,55(14):104-111.
ZHANG Jun,LIU Jiahuan,WANG Xueping,et al.Wheel-rail friction work calculation method and rail wear prediction based on finite element method[J].Journal of Mechanical Engineering,2019,55(14):104-111.(In Chinese)
雷震宇,王志强.地铁小半径曲线段钢轨磨耗分布发展特性分析[J].机械强度,2020,42(4):890-895.
LEI Zhenyu,WANG Zhiqiang.Analysis of development characteristics of rail wear distribution of small radius curve section in metro[J].Journal of Mechanical Strength,2020,42(4):890-895.(In Chinese)
JIANG Y Y,SEHITOGLU H.A model for rolling contact failure[J].Wear,1999,224(1):38-49.
刘云涛,段志东.轨底坡对重载铁路钢轨疲劳裂纹萌生寿命的影响[J].铁道科学与工程学报,2022,19(5):1250-1259.
LIU Yuntao,DUAN Zhidong.Influence of track cant on fatigue crack initiation life of heavy-haul rails[J].Journal of Railway Science and Engineering,2022,19(5):1250-1259.(In Chinese)
ZHAO X.Modeling of high-speed wheel-rail rolling contact on a corrugated rail and corrugation development[J].Journal of Zhejiang University Science A,2014,15:946-963.
GAO J M,ZHAI W M,GUO Y.Wheel-rail dynamic interaction due to rail weld irregularity in high-speed railways[J].Proceedings of the Institution of Mechanical Engineers,Part F:Journal of Rail and Rapid Transit,2018,232(1):249-261.
陈美,翟婉明,閤鑫,等.高速铁路多边形车轮通过钢轨焊接区的轮轨动力特性分析[J].科学通报,2019,64(25):2573-2582.
CHEN Mei,ZHAI Wanming,GE Xin,et al.Analysis of wheel-rail dynamic characteristics due to polygonal wheel passing through rail weld zone in high-speed railways[J].Chinese Science Bulletin,2019,64(25):2573-2582.(In Chinese)
牛留斌,赵隽,刘金朝.钢轨焊接接头激励下的轮轨垂向力特性[J].铁道建筑,2020,60(9):131-135.
NIU Liubin,ZHAO Jun,LIU Jinzhao.Wheel-rail vertical force characteristics under rail welded joint excitation[J].Railway Engineering,2020,60(9):131-135.(In Chinese)
石建奎.钢轨焊接接头应力的有限元分析[D].杭州:浙江工业大学,2010:26-27.
SHI Jiankui.Finite element analysis of stress in rail welding joint[D].Hangzhou:Zhejiang University of Technology,2010:26-27.(In Chinese)
JIANG.A fatigue criterion for general multiaxial loading[J].Fatigue & Fracture of Engineering Materials & Structures,2000,23(1):19-32.
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构