1.常州大学 机械与轨道交通学院,常州 213164
2.常州大学 江苏省绿色过程装备重点实验室,常州 213164
3.盐城市崇达石化机械有限公司,盐城 224712
别锋锋,男,1979年生,湖北仙桃人,博士,副教授,硕士研究生导师;主要研究方向为能源装备结构完整性、机械智能故障诊断等;E-mail:bieff@cczu.edu.cn。
张雨婷(通信作者),女,2000年生,江苏淮安人,在读硕士研究生;主要研究方向为机械智能故障诊断;E-mail:s22050858068@smail.cczu.edu.cn。
收稿:2024-01-17,
修回:2024-04-25,
纸质出版:2025-10-15
移动端阅览
别锋锋,张雨婷,李倩倩,等. 基于IDBO-TVFEMD与改进小波阈值函数的滚动轴承复合故障诊断方法[J]. 机械强度,2025,47(10):51-62.
BIE Fengfeng,ZHANG Yuting,LI Qianqian,et al. Compound fault diagnosis method of rolling bearings based on IDBO-TVFEMD and improved wavelet threshold function[J]. Journal of Mechanical Strength,2025,47(10):51-62.
别锋锋,张雨婷,李倩倩,等. 基于IDBO-TVFEMD与改进小波阈值函数的滚动轴承复合故障诊断方法[J]. 机械强度,2025,47(10):51-62. DOI: 10.16579/j.issn.1001.9669.2025.10.006.
BIE Fengfeng,ZHANG Yuting,LI Qianqian,et al. Compound fault diagnosis method of rolling bearings based on IDBO-TVFEMD and improved wavelet threshold function[J]. Journal of Mechanical Strength,2025,47(10):51-62. DOI: 10.16579/j.issn.1001.9669.2025.10.006.
针对滚动轴承故障的振动信号在强噪声背景下容易受到干扰不易提取的情况,提出了一种基于改进的蜣螂优化器(Improved Dung Beetle Optimizer
IDBO)算法-时变滤波经验模态分解(Time Varying Filtered Empirical Mode Decompo-sition
TVFEMD)与新型小波阈值函数去噪相结合的故障诊断方法。首先,运用IDBO对TVFEMD中B样条阶数和带宽阈值
<math id="M1"><mi>ξ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=92601724&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=92601733&type=
1.60866666
2.87866688
进行迭代寻优,得出最佳参数组合,然后,对原始信号进行TVFEMD,得到各本征模态函数(Intrinsic Mode Function
IMF)分量,通过相关系数准则去除其中的无关分量,重构新信号。随后,运用改进的小波阈值函数对新信号进行二次去噪处理。最后,对处理完的信号进行包络谱分析,提取其故障特征频率。通过仿真模拟信号与故障模拟试验分析研究,实现IDBO-TVFEMD与改进小波阈值函数相结合的故障诊断方法和经验模态分解(Empirical Mode Decomposition
EMD)、集合经验模态分解(Ensemble Empirical Mode Decomposition
EEMD)、完全集合经验模态分解去噪(Complete EEMD with Adaptive Noise
CEEMDAN)方法的对比,研究结果表明,提出的算法模型具备更好的
诊断效果。
A fault diagnosis method based on improved dung beetle optimizer (IDBO)-time varying filtered empirical mode decomposition (TVFEMD) with improved wavelet threshold functions was proposed aiming at that the vibration signal of rolling bearing fault tends to be disturbed and overwhelmed by strong noise background. IDBO was primarily developed to iteratively optimize B-spline order and bandwidth threshold
<math id="M2"><mi>ξ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=92601710&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=92601734&type=
1.60866666
2.70933342
in TVFEMD, and the optimal parameter combination was obtained. Applying TVFEMD on the original signal
the decomposition for intrinsic mode function (IMF) component series were achieved
among which the irrelevant components were removed by correlation coefficient criterion
and target signals were reconstructed. Then the improved wavelet threshold function was employed on the new signal for further denoising. Finally
the envelope spectrum of the processed signal was calculated
from which the typical fault characteristic frequency was extracted. Through simulation signal and fault simulation test analysis
the fault diagnosis method combined with IDBO-TVFEMD and improved wavelet threshold function was compared with empirical mode decomposition (EMD)
ensemble empirical mode decomposition (EEMD) and complete EEMD with adaptive noise (CEEMDAN) denoising methods. The research results show that the algorithm model proposed in this paper has higher efficiency.
曹亚磊 , 杜应军 , 韦广 , 等 . SGMD-MOMEDA滚动轴承故障特征提取方法研究 [J]. 机械强度 , 2022 , 44 ( 6 ): 1279 - 1285 .
CAO Yalei , DU Yingjun , WEI Guang , et al . Research on rolling bearing fault feature extraction method with SGMD-MOMEDA [J]. Journal of Mechanical Strength , 2022 , 44 ( 6 ): 1279 - 1285 . (In Chinese)
高山 , 周玉平 , 陈宏 , 等 . 全矢HMM在轴承剩余寿命预测中的应用 [J]. 机械设计与制造 , 2020 ( 12 ): 64 - 67 .
GAO Shan , ZHOU Yuping , CHEN Hong , et al . The prediction of residual life of full vector HMM bearing based on KPCA [J]. Machinery Design & Manufacture , 2020 ( 12 ): 64 - 67 . (In Chinese)
韩雪飞 , 施展 , 华云松 . 基于参数优化MOMEDA与CEEMDAN的滚动轴承微弱故障特征提取研究 [J]. 机械强度 , 2021 , 43 ( 5 ): 1041 - 1049 .
HAN Xuefei , SHI Zhan , HUA Yunsong . Weak fault feature extraction of rolling bearing based on parameter optimized MOMEDA and CEEMDAN [J]. Journal of Mechanical Strength , 2021 , 43 ( 5 ): 1041 - 1049 . (In Chinese)
HUANG N E , LONG S R , WU M L C , et al . The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society.Mathematical ,Physical and Engineering Sciences, 1998 , 454 ( 1971 ): 903 - 995 .
WU Z H , HUANG N E . Ensemble empirical mode decomposition:a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis , 2009 , 1 ( 1 ): 1 - 41 .
TORRES M E , COLOMINAS M A , SCHLOTTHAUER G , et al . A complete ensemble empirical mode decomposition with adaptive noise [C]// Proceedings of the 2011 IEEE International Conference on Acoustics,Speech and Signal Processing . Prague . New York : IEEE , 2011 : 4144 - 4147 .
LI H , LI Z , MO W . A time varying filter approach for empirical mode decomposition [J]. Signal Processing , 2017 , 138 : 146 - 158 .
岑立 , 钟先友 . 基于粒子群优化时变滤波经验模态分解的轴承故障诊断 [J]. 机械 , 2020 , 47 ( 11 ): 8 - 16 .
CEN Li , ZHONG Xianyou . Bearing fault diagnosis based on particle swarm optimized time-varying filtering empirical mode decomposition [J]. Machinery , 2020 , 47 ( 11 ): 8 - 16 . (In Chinese)
XUE J , SHEN B . Dung beetle optimizer:a new meta-heuristic algorithm for global optimization [J]. The Journal of Supercomputing , 2022 , 79 : 7305 - 7336 .
潘劲成 , 李少波 , 周鹏 , 等 . 改进正弦算法引导的蜣螂优化算法 [J]. 计算机工程与应用 , 2023 , 59 ( 22 ): 92 - 110 .
PAN Jincheng , LI Shaobo , ZHOU Peng , et al . Dung beetle optimization algorithm guided by improved sine algorithm [J]. Computer Engineering and Applications , 2023 , 59 ( 22 ): 92 - 110 . (In Chinese)
DONOHO D L . De-nosing by soft-thresholding [J]. IEEE Transactions on Information Theory , 1995 , 41 ( 3 ): 613 - 627 .
樊高瞻 , 周俊 , 朱昆莉 . 基于改进形态-小波阈值降噪的轴承复合故障声学诊断 [J]. 振动与冲击 , 2020 , 39 ( 12 ): 221 - 226 .
FAN Gaozhan , ZHOU Jun , ZHU Kunli . An improved morphological-wavelet threshold de-noising method based acoustic diagnosis for bearing composite faults [J]. Journal of Vibration and Shock , 2020 , 39 ( 12 ): 221 - 226 . (In Chinese)
唐贵基 , 周翀 , 庞彬 , 等 . 基于参数优化时变滤波经验模态分解的转子故障诊断 [J]. 振动与冲击 , 2019 , 38 ( 10 ): 162 - 168 .
TANG Guiji , ZHOU Chong , PANG Bin , et al . Parameter optimized time-varying filter based empirical mode decomposition method for the fault diagnosis of rotors [J]. Journal of Vibration and Shock , 2019 , 38 ( 10 ): 162 - 168 . (In Chinese)
TU N , FAN Z . IMODBO for optimal dynamic reconfiguration in active distribution networks [J]. Processes , 2023 , 11 ( 6 ): 1827 .
XU D M , LI Z , WANG W C . An ensemble model for monthly runoff prediction using least squares support vector machine based on variational modal decomposition with dung beetle optimization algorithm and error correction strategy [J]. Journal of Hydrology , 2024 , 629 : 130558 .
SHEN Q W , ZHANG D M , XIE M S , et al . Multi-strategy enhanced dung beetle optimizer and its application in three-dimensional UAV path planning [J]. Symmetry , 2023 , 15 ( 7 ): 1432 .
AHMAD M F , ISA N A M , WEI L H , et al . Differential evolution with modified initialization scheme using chaotic oppositional based learning strategy [J]. Alexandria Engineering Journal , 2022 , 61 ( 12 ): 11835 - 11858 .
HEIDARI A , MIRJALILI S , FARIS H , et al . Harris hawks optimization:algorithm and applications [J]. Future Generation Computer Systems , 2019 , 97 : 849 - 872 .
柳子来 , 王健敏 . 基于自适应 t 分布的改进粒子群实时任务调度算法 [J]. 化工自动化及仪表 , 2020 , 47 ( 5 ): 393 - 397 .
LIU Zilai , WANG Jianmin . Real-time task scheduling algorithm of the improved particle swarm based on the self-adaptive t -distribution [J]. Control and Instruments in Chemical Industry , 2020 , 47 ( 5 ): 393 - 397 . (In Chinese)
YIN S H , LUO Q F , DU Y L , et al . DTSMA:dominant swarm with adaptive t -distribution mutation-based slime mould algorithm [J]. Mathematical Biosciences and Engineering , 2022 , 19 ( 3 ): 2240 - 2285 .
陆俊杰 , 刘柱 , 丁雪兴 , 等 . 局部特征尺度与小波阈值协同下密封摩擦面AE信号降噪研究 [J]. 振动与冲击 , 2023 , 42 ( 12 ): 205 - 211 .
LU Junjie , LIU Zhu , DING Xuexing , et al . A study on noise reduction of AE signal of sealing friction surface under the synergy of local characteristic-scale decomposition and wavelet threshold [J]. Journal of Vibration and Shock , 2023 , 42 ( 12 ): 205 - 211 . (In Chinese)
HUANG J D , LING L , XIAO Q . Research on weak signal detection method for power system fault based on improved wavelet threshold [J]. Energy Reports , 2022 , 8 ( 12 ): 290 - 296 .
MOHAMMED H M , UMAR S U , RASHID T A . A systematic and meta-analysis survey of whale [J]. Computational Intelligence and Neuroscience , 2019 ( 25 ): 8718571 .
ZHANG J , WANG J S . Improved whale optimization algorithm based on nonlinear adaptive weight and golden sine operator [J]. IEEE Access , 2020 , 8 : 77013 - 77048 .
朱俊杰 , 张清华 , 朱冠华 , 等 . 基于EEMD与GWO-SVM的石化机组轴承故障诊断 [J]. 自动化与仪表 , 2023 , 38 ( 11 ): 60 - 65 .
ZHU Junjie , ZHANG Qinghua , ZHU Guanhua , et al . Fault diagnosis of petrochemical unit bearings based on EEMD and GWO-SVM [J]. Automation & Instrumentation , 2023 , 38 ( 11 ): 60 - 65 . (In Chinese)
于洋 , 李赟 , 杨平 , 等 . 改进小波阈值函数和ACEWT方法的滚动轴承故障声发射信号特征提取 [J]. 振动与冲击 , 2023 , 42 ( 17 ): 194 - 202 .
YU Yang , LI Yun , YANG Ping , et al . Improved wavelet threshold function and ACEWT method for feature extraction of acoustic emission signals from rolling bearing faults [J]. Journal of Vibration and Shock , 2023 , 42 ( 17 ): 194 - 202 . (In Chinese)
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621