1.兰州交通大学 机电工程学院,兰州 730070
2.中国铁路乌鲁木齐局集团有限公司乌鲁木齐机务段,乌鲁木齐 830023
王昕,男,1973年生,吉林四平人,副教授;主要研究方向为机械系统动力学;E-mail:wangx@mail.lzjtu.cn。
收稿:2024-01-02,
修回:2024-02-29,
纸质出版:2025-10-15
移动端阅览
王昕,康凯,金花. 刚度时变碰振系统的共存吸引子的分岔与稳定性[J]. 机械强度,2025,47(10):43-50.
WANG Xin,KANG Kai,JIN Hua. Bifurcation and stability of coexistence attractors in a time-varying stiffness impact vibration system[J]. Journal of Mechanical Strength,2025,47(10):43-50.
王昕,康凯,金花. 刚度时变碰振系统的共存吸引子的分岔与稳定性[J]. 机械强度,2025,47(10):43-50. DOI: 10.16579/j.issn.1001.9669.2025.10.005.
WANG Xin,KANG Kai,JIN Hua. Bifurcation and stability of coexistence attractors in a time-varying stiffness impact vibration system[J]. Journal of Mechanical Strength,2025,47(10):43-50. DOI: 10.16579/j.issn.1001.9669.2025.10.005.
考虑机械系统的刚度时变特性,以一类单自由度含间隙刚度时变碰振系统模型为对象,建立其动力学模型及Poincaré映射,并给出数值计算方法。利用数值仿真和最大Lyapunov指数分析时变刚度波动幅值比对系统的动力学响应和特性的影响。结合多初值分岔图、吸引域、相图和Poincaré映射图,应用延拓打靶法研究外激励变化,探究系统的共存吸引子演变与分岔。当分岔参数变化、系统出现共存现象时,揭示了局部吸引子出现与消失的原因以及不稳定吸引子在分岔前后吸引域的分布机制,得出共存吸引子稳定性改变规律。
Considering the time-varying stiffness characteristics of mechanical systems
a single-degree-of-freedom time-varying impact vibration system model with clearance stiffness was studied. The dynamic model and Poincaré map were established
and numerical calculation methods were given. The influence of the ratio of time-varying stiffness amplitudes on the dynamic response and characteristics of the system was analyzed using numerical simulation and the maximum Lyapunov exponent. By combining multiple initial value bifurcation diagrams
attraction domains
phase diagrams
and Poincaré mapping diagrams
the evolution and bifurcation of coexisting attractors in the system were studied by applying the continuation shooting method. When the bifurcation parameter changes and the system exhibits the coexistence phenomenon
the reasons for the appearance and disappearance of local attractors and the distribution mechanism of unstable attractors in the attraction domain before and after bifurcation are revealed. The stability change rule of coexisting attractors is obtained.
LIANG S , HOU L , ZHANG H Y , et al . Bifurcation and chaos analysis of cutter head-spindle system of VH-CATT gear machine tool considering time-varying stiffness [J]. The International Journal of Advanced Manufacturing Technology , 2023 , 124 ( 11 ): 3995 - 4008 .
NATALI C , BATTARRA M , THEODOSSIADES S . Continuation analysis of cam-follower mechanisms considering time-varying stiffness and loss of contact [J]. Nonlinear Dynamics , 2023 , 111 ( 18 ): 16921 - 16938 .
GHAZAVI M R , SUN Q . Bifurcation onset delay in magnetic bearing systems by time varying stiffness [J]. Mechanical Systems and Signal Processing , 2017 , 90 : 97 - 109 .
陈国辉 , 徐业银 , 焦映厚 . 考虑偏转的斜齿轮啮合刚度及其振动分析 [J]. 吉林大学学报(工学版) , 2023 , 53 ( 7 ): 1902 - 1910 .
CHEN Guohui , XU Yeyin , JIAO Yinghou . Meshing stiffness calculation and vibration analysis of helical gear considering deflection [J]. Journal of Jilin University(Engineering and Technology Edition) , 2023 , 53 ( 7 ): 1902 - 1910 . (In Chinese)
苟向锋 , 韩林勃 , 朱凌云 , 等 . 单自由度齿轮传动系统安全盆侵蚀与分岔 [J]. 振动与冲击 , 2020 , 39 ( 2 ): 123 - 131 .
GOU Xiangfeng , HAN Linbo , ZHU Lingyun , et al . Erosion and bifurcation of the safe basin for a single-degree-of-freedom spur gear system [J]. Journal of Vibration and Shock , 2020 , 39 ( 2 ): 123 - 131 . (In Chinese)
张悦 , 安子军 , 刘子强 , 等 . 精密钢球传动系统动力学建模与模态分析 [J]. 振动与冲击 , 2019 , 38 ( 4 ): 166 - 174 .
ZHANG Yue , AN Zijun , LIU Ziqiang , et al . A dynamic model and modal analysis of a precision ball transmission system [J]. Journal of Vibration and Shock , 2019 , 38 ( 4 ): 166 - 174 . (In Chinese)
李健 , 张思进 . 非光滑动力系统胞映射计算方法 [J]. 固体力学学报 , 2007 , 28 ( 1 ): 93 - 96 .
LI Jian , ZHANG Sijin . Cell-mapping computation method for non-smooth dynamical systems [J]. Acta Mechanica Solida Sinica , 2007 , 28 ( 1 ): 93 - 96 . (In Chinese)
张惠 , 丁旺才 , 李险峰 . 分段光滑碰撞振动系统吸引域结构变化机理研究 [J]. 振动与冲击 , 2019 , 38 ( 18 ): 141 - 147 .
ZHANG Hui , DING Wangcai , LI Xianfeng . Structure change mechanism of the attractor basin in a piecewise-smooth vibro-impact system [J]. Journal of Vibration and Shock , 2019 , 38 ( 18 ): 141 - 147 . (In Chinese)
GENDELMAN O , KRAVETC P , RACHINSKII D . Mixed global dynamics of forced vibro-impact oscillator with Coulomb friction [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science , 2019 , 29 ( 11 ): 113116 .
吴鑫 , 李高磊 , 乐源 . 单自由度碰撞振动系统的奇异非混沌动力学和多稳态共存 [J]. 振动与冲击 , 2022 , 41 ( 2 ): 45 - 52 .
WU Xin , LI Gaolei , YUE Yuan . Strange nonchaotic dynamics and multistable coexistence phenomena of a single-degree-of-freedom vibro-impact system [J]. Journal of Vibration and Shock , 2022 , 41 ( 2 ): 45 - 52 . (In Chinese)
李得洋 , 丁旺才 , 丁杰 , 等 . 两自由度含弹性约束碰撞振动系统共存吸引子转迁控制研究 [J]. 振动工程学报 , 2021 , 34 ( 1 ): 176 - 184 .
LI Deyang , DING Wangcai , DING Jie , et al . Attractor migration control of a two-degree-of-freedom vibro-impact system with soft constraints [J]. Journal of Vibration Engineering , 2021 , 34 ( 1 ): 176 - 184 . (In Chinese)
朱喜锋 , 马硕 , 王剑锋 . 两自由度含非线性约束碰撞系统的多共存吸引子研究 [J]. 机械强度 , 2023 , 45 ( 4 ): 793 - 798 .
ZHU Xifeng , MA Shuo , WANG Jianfeng . Study on multi-coexisting attractors for two-DOF collision system with nonlinear constraints [J]. Journal of Mechanical Strength , 2023 , 45 ( 4 ): 793 - 798 . (In Chinese)
安慧宁 , 金花 , 吕小红 , 等 . 滚动轴承-转子系统的分岔分析与多吸引子共存 [J]. 机械强度 , 2022 , 44 ( 3 ): 554 - 561 .
AN Huining , JIN Hua , LÜ Xiaohong , et al . Bifurcation analysis and coexistence of multiple attractors of a rolling bearing-rotor system [J]. Journal of Mechanical Strength , 2022 , 44 ( 3 ): 554 - 561 . (In Chinese)
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621