1.内蒙古科技大学 机械工程学院,包头 014010
2.北京城建设计发展集团股份有限公司,北京 100037
3.中车株洲电力机车有限公司,株洲 412001
胡伟钧,男,1998年生,四川广安人,硕士研究生;主要研究方向为机械装备传动链关键部件数模驱动下的状态辨识;E-mail:huweijun1998@163.com。
收稿:2024-01-16,
纸质出版:2025-10-15
移动端阅览
胡伟钧,李道全,胡继军. 基于改进生成对抗网络的双馈式风力发电机轴承故障诊断应用研究[J]. 机械强度,2025,47(10):26-35.
HU Weijun,LI Daoquan,HU Jijun. Application research on fault diagnosis of double fed wind turbine bearings based on improved generative adversarial networks[J]. Journal of Mechanical Strength,2025,47(10):26-35.
胡伟钧,李道全,胡继军. 基于改进生成对抗网络的双馈式风力发电机轴承故障诊断应用研究[J]. 机械强度,2025,47(10):26-35. DOI: 10.16579/j.issn.1001.9669.2025.10.003.
HU Weijun,LI Daoquan,HU Jijun. Application research on fault diagnosis of double fed wind turbine bearings based on improved generative adversarial networks[J]. Journal of Mechanical Strength,2025,47(10):26-35. DOI: 10.16579/j.issn.1001.9669.2025.10.003.
针对双馈风力发电机组滚动轴承长期处于正常情况下缺少故障样本导致的数据不平衡、故障诊断精度低下的问题,提出一种基于扩充高质量故障样本并使用双特征提取的改进生成对抗网络故障诊断方法。首先,将有限个滚动轴承故障样本通过最大均值差异与含惩罚项约束下的沃瑟斯坦(Wasserstein)式生成对抗网络完成故障样本扩充;其次,基于双特征提取模型的方法分别对经时频转换后的时序特征与局部特征进行提取;最后,通过分类器完成滚动轴承平衡数据的故障诊断。标准数据集以及试验结果表明,所提方法故障诊断性能在缺少故障样本的同时也有所提高。
Aiming at the problem of the low fault diagnosis accuracy caused by the lack of fault samples for the rolling bearings of doubly fed wind turbines under normal conditions for a long time
an improved generative adversarial network fault diagnosis method based on expanding high-quality fault samples and using dual feature extraction was proposed. Firstly
a finite number of rolling bearing fault samples were expanded through a Wasserstein type generative adversarial network with maximum mean discrepancy and penalty constraints. Secondly
based on the dual feature extraction model
the time-frequency converted temporal features and local features were extracted separately. Finally
the fault diagnosis of the rolling bearing balance data was completed through a classifier. The standard dataset and test results show that the proposed method improves the fault diagnosis performance while lacking fault samples.
杨青 , 陆见光 , 唐向红 , 等 . 基于infoGAN和CNN的轴承小样本故障诊断 [J]. 兵器装备工程学报 , 2021 , 42 ( 11 ): 235 - 240 .
YANG Qing , LU Jianguang , TANG Xianghong , et al . Bearing small sample fault diagnosis based on infoGAN and CNN [J]. Journal of Ordnance Equipment Engineering , 2021 , 42 ( 11 ): 235 - 240 . (In Chinese)
LIU Q J , MA G J , CHENG C . Generative adversarial network based multi-class imbalanced fault diagnosis of rolling bearing [C]// 2019 4th International Conference on System Reliability and Safety (ICSRS) . Rome,Italy : Institute of Electrical and Electronics Engineers(IEEE) , 2019 : 318 - 324 .
严帅 , 熊新 . 基于改进相对样本熵和BIGRU的滚动轴承退化分析 [J]. 组合机床与自动化加工技术 , 2022 ( 6 ): 96 - 100 .
YAN Shuai , XIONG Xin . Rolling bearing degradation analysis based on improved relative sample entropy and BIGRU [J]. Modular Machine Tool & Automatic Manufacturing Technique , 2022 ( 6 ): 96 - 100 . (In Chinese)
郭俊锋 , 吕健豪 . 基于1DCNN和动态路由的滚动轴承故障诊断 [J]. 组合机床与自动化加工技术 , 2021 ( 11 ): 53 - 57 .
GUO Junfeng , LÜ Jianhao . Fault diagnosis of rolling bearing based on 1DCNN and dynamic routing [J]. Modular Machine Tool & Automatic Manufacturing Technique , 2021 ( 11 ): 53 - 57 . (In Chinese)
陈玉球 . 基于改进CNN-BiGRU的电机轴承故障识别 [J]. 组合机床与自动化加工技术 , 2022 ( 7 ): 75 - 80 .
CHEN Yuqiu . Motor bearing fault identification based on improved CNN-BiGRU [J]. Modular Machine Tool & Automatic Manufacturing Technique , 2022 ( 7 ): 75 - 80 . (In Chinese)
ZHANG K , WANG J Y , SHI H T , et al . A fault diagnosis method based on improved convolutional neural network for bearings under variable working conditions [J]. Measurement , 2021 , 182 : 109749 .
LUO J , HUANG J Y , LI H M . A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis [J]. Journal of Intelligent Manufacturing , 2021 , 32 ( 2 ): 407 - 425 .
TAO H F , WANG P , CHEN Y Y , et al . An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks [J]. Journal of the Franklin Institute , 2020 , 357 ( 11 ): 7286 - 7307 .
ARJOVSKY M , CHINTALA S , BOTTOUL , et al . Wasserstein generative adversarial networks [C]// Proceedings of the 34th International Conference on Machine Learing . Proceedings of Machine Learing Research(PMLR) , 2017 , 70 : 214 - 223 .
武洋名 , 宗学军 , 何戡 . 基于数据增强的DBN-ELM入侵检测方法 [J]. 科学技术与工程 , 2022 , 22 ( 34 ): 15195 - 15202 .
WU Yangming , ZONG Xuejun , HE Kan . DBN-ELM intrusion detection method based on data augmentation [J]. Science Technology and Engineering , 2022 , 22 ( 34 ): 15195 - 15202 . (In Chinese)
赵玉明 , 舒红平 , 魏培阳 , 等 . 面向稀疏数据集的聚类算法 [J]. 科学技术与工程 , 2020 , 20 ( 2 ): 659 - 663 .
ZHAO Yuming , SHU Hongping , WEI Peiyang , et al . Clustering algorithm for sparse data set [J]. Science Technology and Engineering , 2020 , 20 ( 2 ): 659 - 663 . (In Chinese)
HAN B K , JIA S X , LIU G F , et al . Imbalanced fault classification of bearing via Wasserstein generative adversarial networks with gradient penalty [J]. Shock and Vibration , 2020 , 2020 ( 1 ): 8836477 .
王廷轩 , 王贵勇 , 刘韬 , 等 . 域适应网络与平衡动态分布自适应的轴承变工况故障迁移诊断研究 [J]. 机械强度 , 2023 , 45 ( 3 ): 509 - 518 .
WANG Tingxuan , WANG Guiyong , LIU Tao , et al . Study of domain adaptive network and balanced dynamic distribution adaptive fault migration diagnosis of bearing under variable conditions [J]. Journal of Mechanical Strength , 2023 , 45 ( 3 ): 509 - 518 . (In Chinese)
HABBOUCHE H , AMIRAT Y , BENKEDJOUH T , et al . Bearing fault event-triggered diagnosis using a variational mode decomposition-based machine learning approach [J]. IEEE Transactions on Energy Conversion , 2022 , 37 ( 1 ): 466 - 474 .
CHO K , VAN MERRIENBOER B , GULCEHRE C , et al . Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]// Conference on Empirical Methods in Natural Language Processing ,vol. 3 :Conference on Empirical Methods in Natural Language Processing(EMNLP 2014),2014, Doha,Qatar.Association for Computational Linguistics ,2014: 1724 - 1734 .
柴同 , 袁逸萍 , 马军岩 , 等 . 基于K-CNN和N-GRU的风电机组发电机状态预测 [J]. 机械强度 , 2023 , 45 ( 5 ): 1043 - 1049 .
CHAI Tong , YUAN Yiping , MA Junyan , et al . State prediction of wind turbine generator based on K-CNN and N-GRU [J]. Journal of Mechanical Strength , 2023 , 45 ( 5 ): 1043 - 1049 . (In Chinese)
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621