1.厦门大学 航空航天学院,厦门 361102
2.华东交通大学 机电与车辆工程学院,南昌 330013
LUO Yuanyi, E⁃mail:luoyuanyizw@126.com
收稿:2023-12-15,
修回:2024-01-16,
纸质出版:2025-10-15
移动端阅览
罗元易,肖望强,朱海燕. 不同振动烈度的L形工业管颗粒阻尼减振技术研究[J]. 机械强度,2025,47(10):16-25.
LUO Yuanyi,XIAO Wangqiang,ZHU Haiyan. Research on particle damping technology of L-shaped industrial tubes with different vibration intensities[J]. Journal of Mechanical Strength,2025,47(10):16-25.
罗元易,肖望强,朱海燕. 不同振动烈度的L形工业管颗粒阻尼减振技术研究[J]. 机械强度,2025,47(10):16-25. DOI: 10.16579/j.issn.1001.9669.2025.10.002.
LUO Yuanyi,XIAO Wangqiang,ZHU Haiyan. Research on particle damping technology of L-shaped industrial tubes with different vibration intensities[J]. Journal of Mechanical Strength,2025,47(10):16-25. DOI: 10.16579/j.issn.1001.9669.2025.10.002.
工业管道常与压缩机、泵等动力设备连接,承载了物料运输、压力传导等重要功能,是工业生产中物料传递的“高速路”。长期过大的振动是管道结构疲劳损伤、安装在管道上的仪表脱落、配套元件失敏等问题的根本原因。对管道振动、噪声及其控制技术的研究,是满足工业生产要求的基本前提。颗粒阻尼器由于其阻尼效果明显、可靠性高、便于安装等优点,常常用于工业管道的振动控制中。然而,颗粒阻尼材料的减振机制、设置方法等尚不完备,导致其减振效果难以预测。首先,研究用于L形工业管道减振的颗粒阻尼器的理论计算方法,分析了颗粒在“等效固体”“等效液体”2种状态下的阻尼耗能机制。然后,按照阻尼器安装位置振动烈度的不同,提出颗粒阻尼器的理论计算方法。研究结果表明,无错位流动的小振动条件下,将颗粒的耗能等效为颗粒与管道之间的脉冲碰撞力以及摩擦耗能;大振动条件下,颗粒之间形成了错位流动,表现出黏滞阻尼效应。理论和试验结果表明,当颗粒阻尼器位于约化加速度
<math id="M1"><mi>Γ</mi><mo>≤</mo><mn mathvariant="normal">3.8</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=92599549&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=92599548&type=
11.00666618
2.37066650
的环境中时,宜采用碰撞阻尼的方法表征颗粒阻尼器的耗散性能;当颗粒阻尼器位于约化加速度
<math id="M2"><mi>Γ</mi><mo>></mo><mn mathvariant="normal">3.8</mn></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=92599588&type=
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=92599527&type=
10.92199993
2.37066650
的环境中时,宜采用多相流的思路预测颗粒阻尼器减振效果。
Pipelines are frequently connected to power equipment such as compressors and pumps
serving critical functions including material transport and pressure transmission
thereby constituting the “highways” for material transfer in industrial production. Prolonged excessive vibration is the fundamental cause of structural fatigue damage in pipelines
detachment of instruments mounted on pipelines
and desensitization of auxiliary components. Research on pipeline vibration
noise
and their control technologies is a fundamental prerequisite for meeting industrial production requirements. Due to their significant damping effects
high reliability
and ease of installation
particle dampers are commonly employed for vibration control in industrial pipelines. However
the damping mechanisms and configuration methods of particle damping materials remain incomplete
resulting in difficulties in predicting their vibration attenuation performance. Firstly
a theoretical calculation method was developed for particle dampers used in L-shaped industrial pipelines
and the energy dissipation mechanisms of particles were analyzed under two states: “equivalent solid” and “equivalent fluid”. Then
based on variations in vibration intensity at damper installation locations
a theoretical calculation approach for particle dampers was proposed. The results indicate that under small vibration conditions without slip flow
the energy dissipation by particles can be equivalently represented by impulsive collision forces between particles and the pipeline
as well as frictional energy loss; under large vibration conditions
slip flow occurs among particles exhibiting viscous damping effects. Both theoretical analysis and test results demonstrate that when particle dampers operate within an environment characterized by a reduced acceleration
Γ
≤3.8
collision-based damping models are appropriate to characterize their dissipative performance; conversely
when operating under reduced acceleration conditions
Γ
>
3.8
multiphase flow frameworks should be employed to predict the vibration attenuation efficacy of particle dampers.
田秋慧 . 超高压往复活塞式压缩机排气管路振动研究 [D]. 杭州 : 浙江大学 , 2021 : 1 - 74 .
TIAN Qiuhui . Study on vibration mechanism of discharge pipeline of high-pressure reciprocating compressor [D]. Hangzhou : Zhejiang University , 2021 : 1 - 74 . (In Chinese)
PANDA L N , KAR R C . Nonlinear dynamics of a pipe conveying pulsating fluid with parametric and internal resonances [J]. Nonlin-ear Dynamics , 2007 , 49 ( 1 ): 9 - 30 .
何鹏 , 陈京会 , 徐进 , 等 . 磁流变液减振器性能试验研究 [J]. 噪声与振动控制 , 2023 , 43 ( 2 ): 278 - 284 .
HE Peng , CHEN Jinghui , XU Jin , et al . Experimental study on per-formance of magnetorheological dampers [J]. Noise and Vibration Control , 2023 , 43 ( 2 ): 278 - 284 . (In Chinese)
杨秀峰 , 何立东 , 吕江 , 等 . 往复压缩机管线的阻尼减振应用 [J]. 噪声与振动控制 , 2016 , 36 ( 1 ): 183 - 186 .
YANG Xiufeng , HE Lidong , LÜ Jiang , et al . Application of damping technology to the vibration control of a reciprocating compressor's pipeline [J]. Noise and Vibration Control , 2016 , 36 ( 1 ): 183 - 186 . (In Chinese)
张俎琛 , 何立东 , 陈钊 , 等 . 往复式压缩机管线阻尼减振技术 [J]. 化学工程与装备 , 2019 ( 1 ): 209 - 211 .
ZHANG Zuchen , HE Lidong , CHEN Zhao , et al . Damping and vibration reduction technology of reciprocating compressor pipeline [J]. Chemical Engineering & Equipment , 2019 ( 1 ): 209 - 211 . (In Chinese)
CHEN I M , YANG G L , TAN C T , et al . Local POE model for robot kinematic calibration [J]. Mechanism and Machine Theory , 2001 , 36 ( 11/12 ): 1215 - 1239 .
CHUNG Y C , WU Y R . Dynamic modeling of a gear transmission system containing damping particles using coupled multi-body dynamics and discrete element method [J]. Nonlinear Dynamics , 2019 , 98 ( 1 ): 129 - 149 .
XIAO W Q , LU D J , SONG L M , et al . Vibration comfort of mining dump truck based on particle damping [J]. Journal of Traffic and Transportation Engineering , 2019 , 19 ( 6 ): 111 - 124 .
LEI X F , WU C J , WU H L . A novel composite vibration control method using double-decked floating raft isolation system and particle damper [J]. Journal of Vibration and Control , 2018 , 24 ( 19 ): 4407 - 4418 .
张功学 , 曹海兰 . 颗粒混合种类不同的阻尼器减振特性分析 [J]. 机床与液压 , 2015 , 43 ( 9 ): 114 - 116 .
ZHANG Gongxue , CAO Hailan . Analyzing damping characteris-tics of damper with different mixed type particles [J]. Machine Tool & Hydraulics , 2015 , 43 ( 9 ): 114 - 116 . (In Chinese)
VEERAMUTHUVEL P , SHANKAR K , SAIRAJAN K K . Applic-ation of particle damper on electronic packages for spacecraft [J]. Acta Astronautica , 2016 , 127 : 260 - 270 .
LIEBER P , JENSEN D P . An acceleration damper:development,design,and some applications [J]. Journal of Fluids Engineering , 1945 , 67 ( 7 ): 523 - 530 .
ZHANG K , CHEN T N , WANG X P , et al . Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper [J]. Journal of Sound and Vibration , 2016 , 364 : 30 - 43 .
JIN G , ZHAO Z H , LIU B B , et al . Design of a particle damper and experimental study on vibration damping of the pipeline [J]. Advances in Mechanical Engineering , 2021 , 13 ( 9 ): 35 - 42 .
於为刚 , 陈果 , 刘彬彬 , 等 . 飞机管道颗粒碰撞阻尼器设计与试验验证 [J]. 航空学报 , 2018 , 39 ( 12 ): 401 - 413 .
YU Weigang , CHEN Guo , LIU Binbin , et al . Design of a particle damping absorber and experimental study on vibration damping of the pipe [J]. Acta Aeronautica et Astronautica Sinica , 2018 , 39 ( 12 ): 401 - 413 . (In Chinese)
王胜利 . 颗粒阻尼器抑制管道振动的研究及蜂窝密封技术应用 [D]. 北京 : 北京化工大学 , 2021 : 1 - 7 .
WANG Shengli . Research on pipeline vibration suppression with particle damper and application of honeycomb seal technology [D]. Beijing : Beijing University of Chemical Technology , 2021 : 1 - 7 . (In Chinese)
王宝顺 , 闫维明 , 何浩祥 , 等 . 基于能量法的颗粒阻尼器减振机理研究及参数分析 [J]. 振动工程学报 , 2019 , 32 ( 3 ): 386 - 395 .
WANG Baoshun , YAN Weiming , HE Haoxiang , et al . Parameter analysis and research on the vibration damping mechanism of particle damper based on energy theory [J]. Journal of Vibration Engineering , 2019 , 32 ( 3 ): 386 - 395 . (In Chinese)
WONG C X , DANIEL M C , RONGONG J A . Energy dissipation prediction of particle dampers [J]. Journal of Sound and Vibration , 2009 , 319 ( 1/2 ): 91 - 118 .
POURTAVAKOLI H , PARTELI E J R , PÖSCHEL T . Granular dampers:does particle shape matter? [J]. New Journal of Physics , 2016 , 18 ( 7 ): 073049 .
KLERK D D , RIXEN D J , JONG J D . The frequency based sub structuring (FBS) method reformulated according to the dual domain decomposition method [C]// Proceedings of the XXIV International Modal Analysis Conference (IMAC) . Missouri : Society for Experimental Mechanics , 2006 : 1176 - 1182 .
DE KLERK D , RIXEN D J , VOORMEEREN S N . General frame-work for dynamic substructuring:history,review and classification of techniques [J]. AIAA Journal , 2008 , 46 ( 5 ): 1169 - 1181 .
周宏伟 , 陈前 . 阻尼颗粒动态特性研究 [J]. 南京航空航天大学学报 , 2008 , 40 ( 6 ): 742 - 746 .
ZHOU Hongwei , CHEN Qian . Experimental investigation on dam-ping particle dynamic characters [J]. Journal of Nanjing University of Aeronautics & Astronautics , 2008 , 40 ( 6 ): 742 - 746 . (In Chinese)
何浩祥 , 王宝顺 , 兰炳稷 , 等 . 基于时频域解析的并联式单向单颗粒阻尼器减振机理及优化研究 [J]. 应用基础与工程科学学报 , 2023 , 31 ( 1 ): 236 - 256 .
HE Haoxiang , WANG Baoshun , LAN Bingji , et al . Research on the damping mechanism and optimization of parallel single-dimensional single particle damper based on time-frequency domain analysis [J]. Journal of Basic Science and Engineering , 2023 , 31 ( 1 ): 236 - 256 . (In Chinese)
WANG D Q , WU C J , YANG R C . Prediction of vibration re-sponse and acoustic radiation of a thin-walled box with particle dampers using multiphase flow theory of gas-particle [J]. Noise Control Engineering Journal , 2016 , 64 ( 1 ): 85 - 98 .
肖望强 , 戴宇 , 孙璟 , 等 . 火工分离用颗粒阻尼降冲击装置研究 [J]. 宇航总体技术 , 2022 , 6 ( 5 ): 18 - 25 .
XIAO Wangqiang , DAI Yu , SUN Jing , et al . Research on particle damping shock device for fire separation [J]. Astronautical Syst-ems Engineering Technology , 2022 , 6 ( 5 ): 18 - 25 . (In Chinese)
SHIMOJI K , NATORI K , SAEKI M . Analysis of granular damping induced by mechanical stirring [J]. Granular Matter , 2022 , 24 ( 4 ): 109 - 124 .
YAN W M , WANG B S , HUANG X H . Research progress of particle damper and its application prospect in civil engineering [J]. China Civil Engineering Journal , 2020 , 53 ( 5 ): 32 - 41 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621