1.上海理工大学 机械工程学院,上海 200093
2.机械工业汽车机械零部件强度与可靠性评价重点实验室,上海 200093
3.上海市新能源汽车可靠性评价专业技术服务平台,上海 200093
4.中汽研汽车试验场股份有限公司,盐城 224100
冯金芝,女,1973年生,山东诸城人,博士,副教授,硕士研究生导师;主要研究方向为现代汽车设计理论;E-mail:jzfeng99@163.com。
收稿:2023-11-28,
修回:2024-01-14,
纸质出版:2025-10-15
移动端阅览
冯金芝,李增宏,张东东,等. 数据驱动的整车道路载荷快速预测方法[J]. 机械强度,2025,47(10):1-15.
FENG Jinzhi,LI Zenghong,ZHANG Dongdong,et al. Data-driven method for rapid prediction of vehicle road load[J]. Journal of Mechanical Strength,2025,47(10):1-15.
冯金芝,李增宏,张东东,等. 数据驱动的整车道路载荷快速预测方法[J]. 机械强度,2025,47(10):1-15. DOI: 10.16579/j.issn.1001.9669.2025.10.001.
FENG Jinzhi,LI Zenghong,ZHANG Dongdong,et al. Data-driven method for rapid prediction of vehicle road load[J]. Journal of Mechanical Strength,2025,47(10):1-15. DOI: 10.16579/j.issn.1001.9669.2025.10.001.
车辆与路面间相互作用力中的车轮六分力是车路间的唯一耦合,获取车轮六分力是开展整车可靠性与耐久性评价的关键。针对传统的车轮六分力获取方法成本高、周期长、效率低的问题,提出数据驱动的车轮载荷快速预测的方法。首先,针对实车道路非平稳随机信号,采用基于自适应噪声完备集合经验模态分解(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
CEEMDAN)、排列熵(Permutation Entropy
PE)以及小波阈值降噪(Wavelet Threshold Denoising
WTD)的联合方法进行数据去噪;其次,以轮心加速度、减振器位移、质心加速度等容易获取且获取成本低的数据为输入,设计包含非线性传递关系的不同神经网络架构进行多路面下车轮六分力预测,并建立时域、频域、损伤域多维度载荷预测评估体系;最后,为克服训练样本大且获取代价高的缺点,提出基于神经网络输入与输出相关性-相干性分析的输入通道压缩方法,提出最小载荷信号片段划分指标并确定各路面最小片段时长,进行训练集压缩。经过模型不断迭代,车轮六分力的预测值与实测值较为接近,载荷特征也得以保留,计算效率提高28.85%,证明了最小数据集模型能够以较少的输入通道数量、较短的载荷片段时长复现较高期望的预测精度。
The six-component forces at the wheel-road interaction represent the sole coupling between the vehicle and the road surface
and obtaining these forces is critical for conducting reliability and durability assessments of the entire vehicle. In response to the high cost
long cycle
and low efficiency associated with traditional methods for obtaining wheel six-component forces
a data-driven approach for rapidly predicting wheel loads was proposed. Firstly
for the non-stationary random signals on real vehicle roads
a joint method of the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
permutation entropy (PE)
and wavelet threshold denoising (WTD) was applied for the data denoising. Secondly
the easily obtainable and low-cost data
such as wheel center acceleration
damper displacement
and center of mass acceleration
were used as inputs. Various neural network architectures with nonlinear transfer relationships were designed for multi-surface wheel six-component force prediction. A multi-dimensional load prediction evaluation system was established in the time domain
frequency domain
and damage domain. Finally
in order to overcome the challenges of a large and costly training dataset
an input channel compression method based on the correlation and coherence analysis of neural network inputs and outputs was proposed. Minimum load signal segment division criteria were introduced
and the minimum segment duration for each road surface was determined to compress the training dataset. Through continuous model iterations
the predicted values of the wheel six-component forces closely match the measured values
and the load characteristics are preserved. This demonstrates that the minimal dataset model can achieve a high level of prediction accuracy with fewer input channels and shorter load segment durations
resulting in a 28.85% improvement in computational efficiency.
赵礼辉 , 李佳欣 , 井清 , 等 . 关联用户的汽车试验场耐久性评价路况循环确定方法研究 [J]. 汽车工程 , 2020 , 42 ( 1 ): 127 - 133 .
ZHAO Lihui , LI Jiaxin , JING Qing , et al . Research on the method of determining road condition cycles of durability test of correlated user automobile test field [J]. Automotive Engineering , 2020 , 42 ( 1 ): 127 - 133 . (In Chinese)
邹喜红 , 凌龙 , 陈静 , 等 . 用户关联的驱动桥试验场耐久性试验规范研究 [J]. 中国机械工程 , 2022 , 33 ( 14 ): 1670 - 1679 .
ZOU Xihong , LING Long , CHEN Jing , et al . Research on durability test specifications of user-association drive axle test fields [J]. China Mechanical Engineering , 2022 , 33 ( 14 ): 1670 - 1679 . (In Chinese)
冯金芝 , 付道琪 , 郑松林 , 等 . 悬架动态K&C试验典型激励谱的编制研究 [J]. 机械强度 , 2022 , 44 ( 4 ): 965 - 971 .
FENG Jinzhi , FU Daoqi , ZHENG Songlin , et al . Study on the compilation of typical excitation spectrum of suspension dynamic K&C test [J]. Journal of Mechanical Strength , 2022 , 44 ( 4 ): 965 - 971 . (In Chinese)
熊飞 . 基于实车道路谱的车身疲劳寿命预测 [D]. 广州 : 华南理工大学 , 2017 : 56 .
XIONG Fei . The fatigue life prediction of car body structure based on real road spectrum [D]. Guangzhou : South China University of Technology , 2017 : 56 . (In Chinese)
徐春 . 汽车变速器道路载荷谱的采集和应用研究 [D]. 北京 : 北京理工大学 , 2018 : 28 .
XU Chun . Research for acquisition and application of vehicle transmission road load spectrum [D]. Beijing : Beijing Institute of Technology , 2018 : 28 . (In Chinese)
王超 . 基于虚拟试验场的车轮六分力提取方法研究 [D]. 重庆 : 重庆理工大学 , 2022 : 55 .
WANG Chao . Research on wheel six-component force extraction method based on virtual proving ground [D]. Chongqing : Chongqing University of Technology , 2022 : 55 . (In Chinese)
李荣强 , 连小锋 , 朱睿 , 等 . 基于机器学习的飞机起落架着陆载荷预测模型 [J]. 科学技术与工程 , 2023 , 23 ( 18 ): 8011 - 8017 .
LI Rongqiang , LIAN Xiaofeng , ZHU Rui , et al . Prediction model of landing load of aircraft landing gear based on machine learning [J]. Science Technology and Engineering , 2023 , 23 ( 18 ): 8011 - 8017 . (In Chinese)
牟哲岳 , 孙勇 , 王瑞良 , 等 . 基于实测数据和机器学习的风电机组载荷预测模型 [J]. 太阳能学报 , 2023 , 44 ( 10 ): 414 - 419 .
MOU Zheyue , SUN Yong , WANG Ruiliang , et al . Prediction model for wind turbine loads based on experimental data and machine learning [J]. Acta Energiae Solaris Sinica , 2023 , 44 ( 10 ): 414 - 419 . (In Chinese)
杨博文 , 霍军周 , 张伟 , 等 . 服役结构超前载荷实时预测方法的研究 [J]. 东北大学学报(自然科学版) , 2022 , 43 ( 4 ): 541 - 550 .
YANG Bowen , HUO Junzhou , ZHANG Wei , et al . Research on real-time overload prediction method of in-service structures [J]. Journal of Northeastern University (Natural Science) , 2022 , 43 ( 4 ): 541 - 550 . (In Chinese)
罗欢 , 胡浩炬 , 余家皓 . 基于深度卷积-长短期记忆神经网络的整车道路载荷预测 [J]. 汽车技术 , 2021 ( 7 ): 46 - 51 .
LUO Huan , HU Haoju , YU Jiahao , et al . Prediction of vehicle road load based on deep convolution neutral network-long-short term memory [J]. Automobile Technology , 2021 ( 7 ): 46 - 51 . (In Chinese)
WANG Y , ZHENG X K , WANG L , et al . Edge-computing based soft sensors with local Finite Impulse Response models for vehicle wheel center loads estimation under multiple working conditions [J]. Control Engineering Practice , 2023 , 133 : 105447 .
韩雪飞 , 施展 , 华云松 . 基于参数优化MOMEDA与CEEMDAN的滚动轴承微弱故障特征提取研究 [J]. 机械强度 , 2021 , 43 ( 5 ): 1041 - 1049 .
HAN Xuefei , SHI Zhan , HUA Yunsong , et al . Weak fault feature extraction of rolling bearing based on parameter optimized MOMEDA and CEEMDAN [J]. Journal of Mechanical Strength , 2021 , 43 ( 5 ): 1041 - 1049 . (In Chinese)
ZHAO J W , NIE G Z , YAN M , et al . A novel approach to precipitation prediction using a coupled CEEMDAN-GRU-Transformer model with permutation entropy algorithm [J]. Water Science & Technology , 2023 , 88 ( 4 ): 1015 - 1038 .
BANDT C , POMPE B . Permutation entropy:a natural complexity measure for time series [J]. Physical Review Letters , 2002 , 88 ( 17 ): 174102 .
李志军 , 张鸿鹏 , 王亚楠 , 等 . 排列熵—CEEMD分解下的新型小波阈值去噪谐波检测方法 [J]. 电机与控制学报 , 2020 , 24 ( 12 ): 120 - 129 .
LI Zhijun , ZHANG Hongpeng , WANG Yanan , et al . Wavelet threshold denoising harmonic detection method based on permutation entropy-CEEMD decomposition [J]. Electric Machines and Control , 2020 , 24 ( 12 ): 120 - 129 . (In Chinese)
陈祥龙 , 张兵志 , 冯辅周 , 等 . 基于改进排列熵的滚动轴承故障特征提取 [J]. 振动工程学报 , 2018 , 31 ( 5 ): 902 - 908 .
CHEN Xianglong , ZHANG Bingzhi , FENG Fuzhou , et al . Fault feature extraction of rolling bearings based on an improved permutation entropy [J]. Journal of Vibration Engineering , 2018 , 31 ( 5 ): 902 - 908 . (In Chinese)
ZHANG X L , CAO L Y , CHEN Y , et al . Microseismic signal denoising by combining variational mode decomposition with permutation entropy [J]. Applied Geophysics , 2022 , 19 ( 1 ): 65 - 80 .
徐隆 , 杨军 , 周龙 , 等 . PE-VMD与小波阈值的干涉型光纤联合去噪方法 [J]. 国外电子测量技术 , 2022 , 41 ( 10 ): 39 - 46 .
XU Long , YANG Jun , ZHOU Long , et al . Joint denoising method for interferic fibers with PE-VMD and wavelet thresholds [J]. Foreign Electronic Measurement Technology , 2022 , 41 ( 10 ): 39 - 46 . (In Chinese)
于淼 , 张耀鲁 , 何禹潼 , 等 . 变分模态分解-排列熵方法用于分布式光纤振动传感系统去噪 [J]. 光学学报 , 2022 , 42 ( 7 ): 62 - 73 .
YU Miao , ZHANG Yaolu , HE Yutong , et al . Variational mode decomposition and permutation entropy method for denoising of distributed optical fiber vibration sensing system [J]. Acta Optica Sinica , 2022 , 42 ( 7 ): 62 - 73 . (In Chinese)
李冬毅 , 覃方君 , 李安 , 等 . 强噪声条件下原子重力仪小波降噪适应性研究 [J]. 海军工程大学学报 , 2023 , 35 ( 2 ): 52 - 58 .
LI Dongyi , QIN Fangjun , LI An , et al . Research on adaptability of wavelet denoising algorithm of atom gravimeter under strong noise conditions [J]. Journal of Naval University of Engineering , 2023 , 35 ( 2 ): 52 - 58 . (In Chinese)
宋秀兰 , 董兆航 , 单杭冠 , 等 . 基于时空融合的多头注意力车辆轨迹预测 [J]. 浙江大学学报(工学版) , 2023 , 57 ( 8 ): 1636 - 1643 .
SONG Xiulan , DONG Zhaohang , SHAN Hangguan , et al . Vehicle trajectory prediction based on temporal-spatial multi-head attention mechanism [J]. Journal of Zhejiang University(Engineering Science) , 2023 , 57 ( 8 ): 1636 - 1643 . (In Chinese)
梁冠群 , 赵通 , 王岩 , 等 . 基于LSTM网络的路面不平度辨识方法 [J]. 汽车工程 , 2021 , 43 ( 4 ): 509 - 517 .
LIANG Guanqun , ZHAO Tong , WANG Yan , et al . Road unevenness identification based on LSTM network [J]. Automotive Engineering , 2021 , 43 ( 4 ): 509 - 517 . (In Chinese)
魏孟 , 王桥 , 叶敏 , 等 . 基于NARX动态神经网络的锂离子电池剩余寿命间接预测 [J]. 工程科学学报 , 2022 , 44 ( 3 ): 380 - 388 .
WEI Meng , WANG Qiao , YE Min , et al . An indirect remaining useful life prediction of lithiumion batteries based on a NARX dynamic neural network [J]. Chinese Journal of Engineering , 2022 , 44 ( 3 ): 380 - 388 . (In Chinese)
文昌俊 , 陈哲 , 邵明颖 , 等 . 基于改进PSO_BP神经网络的干燥机可靠性预测 [J]. 机械强度 , 2023 , 45 ( 2 ): 504 - 508 .
WEN Changjun , CHEN Zhe , SHAO Mingying , et al . Reliability prediction of dryer based on improved PSO_BP neural network [J]. Journal of Mechanical Strength , 2023 , 45 ( 2 ): 504 - 508 . (In Chinese)
LI D H , TIAN J W , SHI S W , et al . Lightweight design of commercial vehicle cab based on fatigue durability [J]. Computer Modeling in Engineering & Sciences , 2023 , 136 ( 1 ): 421 - 445 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构
京公网安备11010802024621