浏览全部资源
扫码关注微信
1.河北工业大学 机械工程学院,天津 300400
2.廊坊景隆重工机械有限公司,廊坊 065300
袁国秩,男,1999年生,河北泊头人,硕士研究生;主要研究方向为动力学仿真与可靠性分析;E-mail:1448436848@qq.com。
桑建兵,男,1974年生,河北邢台人,博士研究生,教授;主要研究方向为可靠性分析与优化;E-mail:sangjianbing@hebut.edu.cn
收稿日期:2023-10-13,
修回日期:2024-03-08,
纸质出版日期:2025-08-15
移动端阅览
袁国秩,刘伟,闫子龙,等. 基于半监督深度神经网络管路抓举车伸缩臂的可靠性分析[J]. 机械强度,2025,47(8):159-167.
YUAN Guozhi,LIU Wei,YAN Zilong,et al. Reliability analysis of telescopic arm of pieline-catching vehicle based on semi-supervised deep neural network[J]. Journal of Mechanical Strength,2025,47(8):159-167.
袁国秩,刘伟,闫子龙,等. 基于半监督深度神经网络管路抓举车伸缩臂的可靠性分析[J]. 机械强度,2025,47(8):159-167. DOI: 10.16579/j.issn.1001.9669.2025.08.019.
YUAN Guozhi,LIU Wei,YAN Zilong,et al. Reliability analysis of telescopic arm of pieline-catching vehicle based on semi-supervised deep neural network[J]. Journal of Mechanical Strength,2025,47(8):159-167. DOI: 10.16579/j.issn.1001.9669.2025.08.019.
伸缩臂作为管路抓举车的关键部件,连接着升降台和机械爪并承担着大部分载荷,对其进行可靠性分析十分必要。由于传统的可靠性方法对于多维度不确定性问题存在计算成本高且精度不高等问题,为了解决这些问题,基于Adams动力学仿真、半监督学习、深度神经网络并结合蒙特卡洛(Monte Carlo
MC)方法提出了一种应用于工程机械可靠性分析的方法。建立了管路抓举车的虚拟样机模型,确定了其危险工况,并结合伸缩臂模型的几何参数和其总体结构确定了影响最大的von Mises应力的不确定因素,并对其进行敏感性分析;使用最优拉丁超立方采样(Optimal Latin Hypercube Sampling
OLHS),依据不确定参数的分布情况进行采样,利用有限元分析软件Ansys WorkBench建立有限元模型,得到样本量对应的输出结果,并引入半监督学习对有限元模拟数据进行处理,提高深度神经网络训练的准确度;最后根据第四强度理论确定了伸缩臂部件的破坏准则,并结合深度神经网络和MC方法预测了伸缩臂部件的可靠度和失效概率。研究结果表明,此方法远高于实际工程要求精度,具有一定的工程指导意义。
The telescopic arm
a pivotal component in the pipeline grabbing vehicle
links the lifting platform and the mechanical claw
shouldering the majority of the load. Conducting a reliability analysis is imperative. Traditional methods for reliability face challenges like high computational costs and low accuracy dealing with multidimensional uncertainties. To overcome these
our study proposed an engineering mechanical reliability analysis method
leveraging Adams dynamic simulation
semi-supervised learning
deep neural networks
and Monte Carlo method. In this study
a virtual prototype model of the pipeline grabbing vehicle was established
identifying hazardous operating conditions. Combining the telescopic arm model’s geometric parameters and overall structure
uncertain factors influencing the maximum von Mises stress were determined
conducting a sensitivity analysis was conducted. Utilizing optimal Latin hypercube sampling based on uncertain parameter distributions
Ansys Workbench was employed to build a finite element model
obtain output results for the sample size. Semi-supervised learning processed the finite element simulation data
enhanced deep neural network training accuracy. Finally
based on the fourth strength theory
a failure criteria for the telescopic arm component was determined. Combining deep neural networks and Monte Carlo method
the reliability and failure probability were predicted. Results show that this method surpasses actual engineering precision requirements, provides a certain guiding significance.
DEMPSTER A P , LAIRD N M , RUBIN D B . Maximum likelihood from incomplete data via the EM algorithm [J]. Journal of the Royal Statistical Society:Series B(Methodological) , 1977 , 39 ( 1 ): 1 - 22 .
JIANG C , HAN X , LU G Y , et al . Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique [J]. Computer Methods in Applied Mechanics and Engineering , 2011 , 200 ( 33/34/35/36 ): 2528 - 2546 .
ZHI P P , LI Y H , CHEN B Z , et al . Fuzzy design optimization-based fatigue reliability analysis of welding robots [J]. IEEE Access , 2020 , 8 : 64906 - 64917 .
ALISHAYANFAR M , ALI BARKHORDARI M , BARKHORI M , et al . Improving the first-order structural reliability estimation by Monte Carlo simulation [J]. Proceedings of the Institution of Civil Engineers-Structures and Buildings , 2017 , 170 ( 7 ): 532 - 540 .
ROY P , MAHAPATRA G S , DEY K N . Forecasting of software reliability using neighborhood fuzzy particle swarm optimization based novel neural network [J]. IEEE/CAA Journal of Automatica Sinica , 2019 , 6 ( 6 ): 1365 - 1383 .
张宏斌 , 贾志新 , 郗安民 . 基于神经网络的小样本系统可靠性预计 [J]. 机械科学与技术 , 2009 ( 12 ): 1555 - 1559 .
ZHANG Hongbin , JIA Zhixin , XI Anmin . System reliability prediction with small samples based on neural networks [J]. Mechanical Science and Technology for Aerospace Engineering , 2009 ( 12 ): 1555 - 1559 . (In Chinese)
赵丽娟 , 靳予记 , 黄凯 . 随机载荷下截割部输出轴可靠性分析 [J]. 机械强度 , 2019 , 41 ( 4 ): 864 - 870 .
ZHAO Lijuan , JIN Yuji , HUANG Kai . Reliability analysis of output shaft of cutting edge section under random load [J]. Journal of Mechanical Strength , 2019 , 41 ( 4 ): 864 - 870 . (In Chinese)
LI H Q , TAN Q . Recognition of reliability model of vibratory roller based on artificial neural network [C]// 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA) . IEEE Computer Society , 2008 : 231 - 234 .
YAN W X , PIN W , HE L . Reliability prediction of CNC machine tool spindle based on optimized cascade feedforward neural network [J]. IEEE Access , 2021 , 9 : 60682 - 60688 .
林景亮 , 黄运保 , 李海艳 , 等 . 基于深度代理模型的叉车臂架液压系统设计优化 [J]. 中国机械工程 , 2022 , 33 ( 3 ): 290 - 298 .
LIN Jingliang , HUNG Yunbao , LI Haiyan , et al . Design optimization for hydraulic systems of forklift boom based on deep surrogate model [J]. China Mechanical Engineering , 2022 , 33 ( 3 ): 290 - 298 . (In Chinese)
王璟 , 孙克俐 . 基于ANN的船舶撞击高桩码头群桩损伤位置预测 [J]. 港工技术 , 2020 , 57 ( 2 ): 34 - 38 .
WANG Jing , SUN Keli . Prediction of damaged position of pile clusters while a ship colliding with piled berth structure based on ANN [J]. Port Engineering Technology , 2020 , 57 ( 2 ): 34 - 38 . (In Chinese)
孔宁宁 , 朱海清 , 李天津 . 基于Adams的安全阀搬运自动导向车原地转向力学仿真研究 [J]. 机械强度 , 2022 , 44 ( 5 ): 1243 - 1248 .
KONG Ningning , ZHU Haiqing , LI Tianjin . Mechanical simulation research on in situ steering of automatic steering vehicle for handling safety valve based on Adams [J]. Journal of Mechanical Strength , 2022 , 44 ( 5 ): 1243 - 1248 . (In Chinese)
李琤 , 李敏 , 王爱国 , 等 . 基于多体动力学的电动助力转向系统仿真与试验研究 [J]. 机械强度 , 2022 , 44 ( 5 ): 1194 - 1200 .
LI Cheng , LI Min , WANG Aiguo , et al . Simulation and experimental research of electric power steering system based on multi-body dynamics [J]. Journal of Mechanical Strength , 2022 , 44 ( 5 ): 1194 - 1200 . (In Chinese)
温秉权 , 黄勇 . 金属材料手册 [M]. 2版 . 北京 : 电子工业出版社 , 2009 : 71 - 73 .
WEN Bingquan , HUANG Yong . Handbook of metal materials [M]. 2nd ed . Beijing : Publishing House of Electronics Industry , 2009 : 71 - 73 . (In Chinese)
GOLDBERG X , GOLDBERG A B . Introduction to semi-supervised learning [J]. Synthesis Lectures on Artificial Intelligence and Machine Learning , 2009 , 6 : 1 - 116 .
CAO Y D , DING Y F , JIA M P , et al . A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings [J]. Reliability Engineering & System Safety , 2021 , 215 : 107813 .
邵可鑫 , 桑建兵 , 田魏昌 , 等 . 基于深度神经网络水下清淤机器人绞龙的可靠性分析 [J]. 机械科学与技术 , 2024 , 43 ( 11 ): 1894 - 1900 .
SHAO Kexin , SANG Jianbing , TIAN Weichang , et al . Reliability analysis of packing auger of desilting robot based on deep neural networks [J]. Mechanical Science and Technology for Aerospace Engineering , 2024 , 43 ( 11 ): 1894 - 1900 . (In Chinese)
彭凡 , 邹司农 , 任毅如 . 基于深度学习的复合材料螺栓连接失效预测 [J]. 机械强度 , 2023 , 45 ( 2 ): 447 - 453 .
PENG Fan , ZOU Sinong , REN Yiru . Failure prediction of bolted connection of composite materials based on deep learning [J]. Journal of Mechanical Strength , 2023 , 45 ( 2 ): 447 - 453 . (In Chinese)
SCHUEREMANS L , VAN GEMERT D . Benefit of splines and neural networks in simulation based structural reliability analysis [J]. Structural Safety , 2005 , 27 ( 3 ): 246 - 261 .
辛俊胜 , 商跃进 , 王红 , 等 . 基于最优拉丁超立方抽样的动车组轴箱弹簧稳健设计 [J]. 铁道机车车辆 , 2020 , 40 ( 5 ): 60 - 64 .
XIN Junsheng , SHANG Yuejin , WANG Hong , et al . Robust design of EMU axle box spring based on optimal Latin hypercube sampling [J]. Railway Locomotive & Car , 2020 , 40 ( 5 ): 60 - 64 . (In Chinese)
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构