浏览全部资源
扫码关注微信
1.江南大学 机械工程学院,无锡 214122
2.江苏省食品先进制造装备技术重点实验室,无锡 214122
张盟,男,1999年生,四川德阳人,在读硕士研究生;主要研究方向为3D打印、超材料;E-mail:1780260080@qq.com。
刘禹,男,1980年生,四川内江人,博士,教授,博士研究生导师;主要研究方向为先进制造技术;E-mail:yuliu@jiangnan.edu.cn。
收稿日期:2024-01-04,
修回日期:2024-02-03,
纸质出版日期:2025-07-15
移动端阅览
张盟,徐嘉文,陈彦秋,等. 一种具有增强力学可调性的3D打印拉胀结构的设计方法[J].机械强度,2025,47(7):101-107.
ZHANG Meng,XU Jiawen,CHEN Yanqiu,et al. A design method of 3D printed auxetic structures with enhanced mechanical tunability[J].Journal of Mechanical Strength,2025,47(7):101-107.
张盟,徐嘉文,陈彦秋,等. 一种具有增强力学可调性的3D打印拉胀结构的设计方法[J].机械强度,2025,47(7):101-107. DOI: 10.16579/j.issn.1001.9669.2025.07.013.
ZHANG Meng,XU Jiawen,CHEN Yanqiu,et al. A design method of 3D printed auxetic structures with enhanced mechanical tunability[J].Journal of Mechanical Strength,2025,47(7):101-107. DOI: 10.16579/j.issn.1001.9669.2025.07.013.
拉胀材料因其在变形下的新颖行为以及许多其他的材料特性(如抗断裂性、抗剪切性和能量吸收)而受到关注。将超弹性材料与拉胀结构相结合,它们的高度可变形的能力使设计具有增强力学可调性的结构成为可能。为此,提出了一种具有增强力学可调性的3D打印拉胀结构的设计方法。通过试验和数值分析,研究了所设计结构的面内压缩行为。结果表明,与传统的拉胀结构相比,具有拉胀结构的复合材料表现出了更高的刚度和增强的能量吸收性能。通过进一步调整正弦韧带的分布和振幅,生成了具有可调能量吸收、泊松比和变形模式的拉胀结构。展示了一种用于提高轻质结构的力学性能和能量吸收的设计方法。
Auxetic materials have garnered attention due to their novel behavior under deformation and numerous other material properties
such as fracture resistance
shear resistance
and energy absorption. By integrating hyperelastic materials with auxetic structures
the highly deformable capability enables the design of structures with enhanced mechanical tunability. To this end
a design methodology for 3D printed auxetic structures with improved mechanical adjustability was proposed. The in-plane compressive behavior of the designed structures was investigated through test and numerical analyses. The results demonstrate that
compared to conventional auxetic structures
the composite material with auxetics structures exhibits higher stiffness and enhanced energy absorption performance. By further adjusting the distribution and amplitude of sinusoidal ligaments
auxetic structures with tunable energy absorption
Poisson ratio
and deformation modes were generated. This study presents a design approach for improving the mechanical properties and energy absorption of lightweight structures.
EVANS K E , NKANSAH M A , HUTCHINSON I J , et al . Molecular network design [J]. Nature , 1991 , 353 : 124 .
REN X , DAS R , TRAN J P , et al . Auxetic metamaterials and structures: a review [J]. Smart Materials and Structures , 2018 , 27 ( 2 ): 023001 .
JIANG S , LIU X J , LIU J P , et al . Flexible metamaterial electronics [J]. Advanced Materials , 2022 , 34 ( 52 ): e2200070 .
BERTOLDI K , VITELLI V , CHRISTENSEN J , et al . Flexible mechanical metamaterials [J]. Nature Reviews Materials , 2017 , 2 ( 11 ): 17066 .
KABIR S , KIM H , LEE S . Characterization of 3D printed auxetic sinusoidal patterns/nylon composite fabrics [J]. Fibers and Polymers , 2020 , 21 ( 6 ): 1372 - 1381 .
LI T T , WANG L F . Bending behavior of sandwich composite structures with tunable 3D-printed core materials [J]. Composite Structures , 2017 , 175 : 46 - 57 .
RADMAN A , HUANG X , XIE Y M . Topology optimization of functionally graded cellular materials [J]. Journal of Materials Science , 2013 , 48 ( 4 ): 1503 - 1510 .
WANG J , LUO X B , WANG K , et al . On impact behaviors of 3D concave structures with negative Poisson's ratio [J]. Composite Structures , 2022 , 298 : 115999 .
WANG Y L , WANG L M , MA Z D , et al . A negative Poisson's ratio suspension jounce bumper [J]. Materials & Design , 2016 , 103 : 90 - 99 .
BABAEE S , SHI Y C , ABBASALIZADEH S , et al . Kirigami-inspired stents for sustained local delivery of therapeutics [J]. Nature Materials , 2021 , 20 ( 8 ): 1085 - 1092 .
侯运优 , 张婕 . 3D打印弹性蜂窝结构的实验和数值模拟研究 [J]. 机械强度 , 2023 , 45 ( 5 ): 1259 - 1264 .
HOU Yunyou , ZHANG Jie . Experimental and numerical simulation of elastic honeycomb structures by 3D printing [J]. Journal of Mechanical Strength , 2023 , 45 ( 5 ): 1259 - 1264 . (In Chinese)
ZHOU G , MA Z D , LI G Y , et al . Design optimization of a novel NPR crash box based on multi-objective genetic algorithm [J]. Structural and Multidisciplinary Optimization , 2016 , 54 ( 3 ): 673 - 684 .
KÖRNER C , LIEBOLD-RIBEIRO Y . A systematic approach to identify cellular auxetic materials [J]. Smart Material Structures , 2015 , 24 ( 2 ): 025013 .
STREK T , JOPEK H , WOJCIECHOWSKI K W . The influence of large deformations on mechanical properties of sinusoidal ligament structures [J]. Smart Material Structures , 2016 , 25 ( 5 ): 054002 .
WARMUTH F , OSMANLIC F , ADLER L , et al . Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting [J]. Smart Material Structures , 2017 , 26 ( 2 ): 025013 .
NOVAK N , KRSTULOVIĆ-OPARA L , REN Z , et al . Compress-ion and shear behaviour of graded chiral auxetic structures [J]. Mechanics of Materials , 2020 , 148 : 103524 .
NOVAK N , KRSTULOVIĆ-OPARA L , REN Z , et al . Mechanical properties of hybrid metamaterial with auxetic chiral cellular structure and silicon filler [J]. Composite Structures , 2020 , 234 : 111718 .
SUNDARARAMAN V , O’DONNELL M P , CHENCHIAH I V , et al . Stiffness tailoring in sinusoidal lattice structures through passive topology morphing using contact connections [J]. Materials & Design , 2023 , 226 : 111649 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构