浏览全部资源
扫码关注微信
1.河南省紧固连接技术重点实验室,信阳 464000
2.河南航天精工制造有限公司,信阳 464000
3.华中农业大学 工学院,武汉 430070
冯德荣,女,1973年生,河南信阳人,正高级工程师;主要研究方向为紧固件检测技术;E-mail:xyfdrong@126.com。
万强,男,1989年生,湖北咸宁人,博士,副教授,硕士研究生导师;主要研究方向为金属材料表面改性;E-mail:wanqiang0915@163.com。
收稿日期:2023-10-14,
修回日期:2024-01-02,
纸质出版日期:2025-07-15
移动端阅览
冯德荣,郭绕龙,余维林,等. 高锁钛合金螺栓偏心载荷下拉伸断裂仿真与强度预测[J]. 机械强度,2025,47(7):33-41.
FENG Derong,GUO Raolong,YU Weilin,et al. Simulation of tensile fracture and strength prediction of high⁃lock titanium alloy bolt under eccentric load[J]. Journal of Mechanical Strength,2025,47(7):33-41.
冯德荣,郭绕龙,余维林,等. 高锁钛合金螺栓偏心载荷下拉伸断裂仿真与强度预测[J]. 机械强度,2025,47(7):33-41. DOI: 10.16579/j.issn.1001.9669.2025.07.004.
FENG Derong,GUO Raolong,YU Weilin,et al. Simulation of tensile fracture and strength prediction of high⁃lock titanium alloy bolt under eccentric load[J]. Journal of Mechanical Strength,2025,47(7):33-41. DOI: 10.16579/j.issn.1001.9669.2025.07.004.
高锁钛合金螺栓偏心安装(螺栓头部与紧固板存在装配角度)会带来过早失效问题,严重影响航天飞行器的安全运行。而现有试验研究又难以获得螺栓断裂过程,继而影响断裂原因分析。同时,试验研究无法获得连续安装角度下螺栓断裂强度变化值。因此,针对偏心安装下高锁螺栓提前断裂的问题,通过有限元分析方法,结合试验对模型验证,利用有限元模型实现偏心安装下螺栓断裂过程可视化与不同角度偏心安装下螺栓抗拉强度预测。研究结果表明,有限元分析获得的安装角度0°与3°螺栓的抗拉强度和断裂位置与试验结果的一致性好,说明有限元模型具有较好的准确性;随安装角度的增大,螺栓头与螺纹均受到偏心载荷,产生的弯矩加剧了这两个区域的应力集中;角度
<math id="M1"><mo><</mo><mn mathvariant="normal">3</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84759527&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84759502&type=
5.50333309
时螺纹处应力较大,角度
<math id="M2"><mo>≥</mo><mn mathvariant="normal">3</mn><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84759503&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84759504&type=
5.58799982
时头部应力较大;有限元模型成功实现1
<math id="M3"><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84759515&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84759516&type=
1.26999998
、2
<math id="M4"><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84759515&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84759516&type=
1.26999998
、4
<math id="M5"><mo>°</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84759541&type=
2.62466669
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=84759533&type=
1.26999998
下的螺栓抗拉强度预测。研究结果有效揭示了偏心载荷作用下高锁钛螺栓的断裂机制,同时仿真模型可实现不同安装角度下螺栓抗拉强度预测,为偏心螺栓服役提供技术说明。
The eccentric installation of high-lock titanium alloy bolts (an assembly angle between the bolt head and the fastening plate) leads to premature failure
which seriously affects the safe operation of aerospace aircraft. Currently
the test research is difficult to obtain the bolt fracture process
which in turn limits the revealing of fracture mechanism. Meanwhile
test research cannot obtain the fracture strength variation value of bolts with different assembly angles. Therefore
in response to the problem of premature fracture of high-lock bolts in the eccentric installation
finite element analysis method was employed and the model was verified by test. The verified finite element model was used to visualize the fracture process of eccentric installation bolts and predict the tensile strength of eccentric installation bolts with different angles. The research results indicate that the tensile strength and fracture position of bolts with installation angles of 0° and 3° obtained from finite element analysis are consistent with the test results
which show that the finite element model has good accuracy. As the installation angle increases
both the bolt head and thread are subjected to eccentric loads
and the bending moment generated aggravates the stress concentration in these two areas. When the assembly angle is less than 3°
the stress at the thread is larger
and when the angle is over 3°
the stress on the head is greater. The finite element model successfully predicts the tensile strength of bolts with an assembly angle of 1°
2°
and 4°. The research results effectively reveal the fracture mechanism of high-lock titanium alloy bolts under the eccentric load. Meanwhile
the simulation model can predict the tensile strength of bolts under different installation angles
and provide technical specifications for the service of eccentric bolts.
赵庆云 , 刘风雷 , 刘华东 . 世界先进航空紧固件进展 [J]. 航空制造技术 , 2009 , 52 ( 3 ): 54 - 56 .
ZHAO Qingyun , LIU Fenglei , LIU Huadong . Development of advanced aerospace fastener [J]. Aeronautical Manufacturing Technology , 2009 , 52 ( 3 ): 54 - 56 . (In Chinese)
于建政 , 宁广西 , 林忠亮 , 等 . 航空工业钛合金紧固件失效分析研究进展 [J]. 材料导报 , 2013 , 27 ( 增刊1 ): 256 - 258 .
YU Jianzheng , NING Guangxi , LIN Zhongliang , et al . Failure analysis progress of titanium alloy fastener used in aerospace industry [J]. Materials Review , 2013 , 27 ( Suppl.1 ): 256 - 258 . (In Chinese)
樊朋霄 , 吴隽 , 王光辉 , 等 . 镀锌管螺纹加工方式对管牙显微组织和性能的影响 [J]. 塑性工程学报 , 2017 , 24 ( 6 ): 203 - 208 .
FAN Pengxiao , WU Jun , WANG Guanghui , et al . Effect of processing methods on the microstructures and properties of galvanized pipe thread [J]. Journal of Plasticity Engineering , 2017 , 24 ( 6 ): 203 - 208 . (In Chinese)
高靖靖 , 李旭健 , 马勇 , 等 . 303Se不锈钢高锁螺母开裂原因 [J]. 理化检验-物理分册 , 2022 , 58 ( 8 ): 61 - 64 .
GAO Jingjing , LI Xujian , MA Yong , et al . Reasons for cracking of 303Se stainless steel high lock nut [J]. Physical Testing and Chemical Analysis(Part A:Physical Testing) , 2022 , 58 ( 8 ): 61 - 64 . (In Chinese)
KANG H , WU Y , GAO F , et al . Mechanical performances and stress states of rock bolts under varying loading conditions [J]. Tunnelling and Underground Space Technology , 2016 , 52 : 138 - 146 .
施睿贇 , 杨文凯 . 轴法兰螺栓安装失效机理分析 [J]. 船舶工程 , 2016 , 38 ( 2 ): 43 - 45 .
SHI Ruiyun , YANG Wenkai . Mechanism analysis of installation failure of flange bolts [J]. Ship Engineering , 2016 , 38 ( 2 ): 43 - 45 . (In Chinese)
刘鹤 , 谢石林 , 曹硕 , 等 . 前风挡螺栓制孔工艺方法改进与优化 [J]. 教练机 , 2018 ( 3 ): 47 - 52 .
LIU He , XIE Shilin , CAO Shuo , et al . Modification and optimization of technology for bolt hole making on windshield [J]. Trainer , 2018 ( 3 ): 47 - 52 . (In Chinese)
LIU S , HE D , FU M . Experimental investigation of surrounding-rock anchoring synergistic component for bolt support in tunnels [J]. Tunnelling and Underground Space Technology , 2020 , 104 : 103531 .
何竞飞 , 万闯建 , 杨鸣 , 等 . 螺栓联接在偏心载荷下螺纹载荷分布规律研究 [J]. 机械科学与技术 , 2015 , 34 ( 8 ): 1149 - 1152 .
HE Jingfei , WAN Chuangjian , YANG Ming , et al . Study on load distribution in the screw thread of bolt-joint subjected to eccentric loading [J]. Mechanical Science and Technology for Aerospace Engineering , 2015 , 34 ( 8 ): 1149 - 1152 . (In Chinese)
颜庭梁 , 李家春 . 螺纹载荷分布计算方法研究及有限元分析 [J]. 机电工程 , 2020 , 37 ( 5 ): 471 - 477 .
YAN Tingliang , LI Jiachun . Calculation method of thread load distribution and finite element analysis [J]. Journal of Mechanical & Electrical Engineering , 2020 , 37 ( 5 ): 471 - 477 . (In Chinese)
ZHAO H . A numerical method for load distribution in threaded connections [J]. Journal of Mechanical Design , 1996 , 118 ( 2 ): 274 .
CHEN J J , SHIH Y S . A study of the helical effect on the thread connection by three dimensional finite element analysis [J]. Nuclear Engineering and Design , 1999 , 191 ( 2 ): 109 - 116 .
陈海平 , 曾攀 , 方刚 , 等 . 螺纹副承载的分布规律 [J]. 机械工程学报 , 2010 , 46 ( 9 ): 171 - 178 .
CHEN Haiping , ZENG Pan , FANG Gang , et al . Load distribution of bolted joint [J]. Journal of Mechanical Engineering , 2010 , 46 ( 9 ): 171 - 178 . (In Chinese)
方新文 , 管佳佳 . TC4钛合金在准静态拉伸下的本构模型及失效参数 [J]. 机械强度 , 2022 , 44 ( 4 ): 831 - 836 .
FANG Xinwen , GUAN Jiajia . Constitutive model and failure parameters of TC4 titanium alloy under quasi-static tensile [J]. Journal of Mechanical Strength , 2022 , 44 ( 4 ): 831 - 836 . (In Chinese)
FENG D , DONG C , HU Y , et al . Fracture mode transition during assembly of TC4 high-lock bolt under tensile load:a combined experimental study and finite element analysis [J]. Materials , 2022 , 15 ( 12 ): 4049 .
ZHANG C , CHEN T . Efficient feature extraction for 2D/3D objects in mesh representation [C]//Proceedings of the 2001 International Conference on Image Processing (Cat.No. 01CH37205) . New York : IEEE , 2001 : 935 - 938 .
WENG T L , SUN C T . A study of fracture criteria for ductile materials [J]. Engineering Failure Analysis , 2000 , 7 ( 2 ): 101 - 125 .
HARTLEY P , CLIFT S E , SALIMINAMIN J , et al . The prediction of ductile fracture initiation in metalforming using a finite-element method and various fracture criteria [J]. Res Mechanica , 1989 , 28 ( 1/2/3/4 ): 269 - 293 .
DŽUGAN J , ŠPANIEL M , PRANTL A , et al . Identification of ductile damage parameters for pressure vessel steel [J]. Nuclear Engineering and Design , 2018 , 328 : 372 - 380 .
JONSÉN P , HÄGGBLAD H Å , SOMMER K . Tensile strength and fracture energy of pressed metal powder by diametral compression test [J]. Powder Technology , 2007 , 176 ( 2/3 ): 148 - 155 .
JOUN M , CHOI I , EOM J , et al . Finite element analysis of tensile testing with emphasis on necking [J]. Computational Materials Science , 2008 , 41 ( 1 ): 63 - 69 .
LIU P F , ZHENG J Y . Finite element analysis of tensile behavior of ductile steel with defects [J]. Journal of Failure Analysis and Prevention , 2010 , 10 : 212 - 217 .
谢程晨 . 侧向受力下螺钉联接的力学模型研究 [D]. 杭州 : 浙江工业大学 , 2020 : 31 - 45 .
XIE Chengchen . Study on mechanical model of bolt connection under lateral load [D]. Hangzhou : Zhejiang University of Technology , 2020 : 31 - 45 . (In Chinese)
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构