浏览全部资源
扫码关注微信
1.江南大学 机械工程学院 江苏省食品先进制造装备技术重点实验室,无锡 214122
2.军事科学院 系统工程研究院,北京 102300
3.北京市科学技术研究院 城市安全与环境科学研究所,北京 100054
江伟,男,1997年生,江苏盐城人,硕士研究生;主要研究方向为机械设计及理论;E-mail:1771591660@qq.com。
宋春芳(通信作者),女,1974年生,河北张家口人,博士,教授,博士研究生导师;主要研究方向为介电加热工艺设备与检测控制、结构振动与噪声控制;E-mail:songcf@jiangnan.edu.cn。
收稿日期:2023-08-28,
修回日期:2023-11-22,
纸质出版日期:2025-06-15
移动端阅览
江伟,任连岭,刘彦琦,等. 夹芯曲梁负刚度结构承载能力和吸能特性研究[J]. 机械强度,2025,47(6):106-117.
JIANG Wei,REN Lianling,LIU Yanqi,et al. Study on carrying capacity and energy absorption characteristics of curved sandwich beam negative stiffness structure[J]. Journal of Mechanical Strength,2025,47(6):106-117.
江伟,任连岭,刘彦琦,等. 夹芯曲梁负刚度结构承载能力和吸能特性研究[J]. 机械强度,2025,47(6):106-117. DOI: 10.16579/j.issn.1001.9669.2025.06.013.
JIANG Wei,REN Lianling,LIU Yanqi,et al. Study on carrying capacity and energy absorption characteristics of curved sandwich beam negative stiffness structure[J]. Journal of Mechanical Strength,2025,47(6):106-117. DOI: 10.16579/j.issn.1001.9669.2025.06.013.
为了提高由2个曲梁平行布置所组成的双曲梁负刚度结构的承载能力,提出了夹芯曲梁负刚度结构,设计思路为在双曲梁负刚度结构的上、下曲梁之间阵列夹层直梁,对其承载能力和吸能性能进行了系统研究。首先,采用3D打印技术与硅胶复模工艺制备了负刚度结构模型,通过准静态压缩试验,对比分析了夹芯曲梁负刚度结构与双曲梁负刚度结构的压缩力学响应,同时验证了有限元仿真模型的可靠性。其次,仿真分析了夹芯中夹层直梁的结构参数(宽度、间距、高度和角度)对夹芯曲梁负刚度结构承载能力和能量吸收特性的影响。结果表明,夹芯的引入可以显著改善双曲梁负刚度结构的承载能力;与夹层直梁间距和角度相比,增加夹层直梁宽度和高度可以显著增强结构的承载能力和能量吸收能力。
In order to improve the carrying capacity of double curved beams negative stiffness structure composed of two curved beams arranged in parallel
the curved sandwich beam negative stiffness structure was proposed. The design idea was to array the sandwich straight beam between the upper and lower curved beams of the double curved beam negative stiffness structure
and the bearing capacity and energy absorption characteristics were studied systematically. Firstly
the negative stiffness structure model was fabricated using 3D printing technology and silicone emolding process
the compressive mechanical response of the curved sandwich beam and double curved beam negative stiffness structure was compared and analyzed by quasi-static compression experiment
and the reliability of the finite element simulation model was verified. Then
the influence of structural parameters (width
spacing
height and angle) of the sandwich straight beam on the bearing capacity and energy absorption characteristics of the negative stiffness structure was studied by simulation. The results indicate that the introduction of the sandwich significantly enhances the load-bearing capacity of the double curved beam negative stiffness structure. Compared with the spacing and angle of the sandwich straight beam
increasing the width and height of the sandwich straight beams can notably enhance the load-bearing capacity and energy absorption capacity of the structure.
HA N S , LU G X . A review of recent research on bio-inspired structures and materials for energy absorption applications [J]. Composites Part B:Engineering , 2020 , 181 : 107496 .
KATZ S , GIVLI S . Solitary waves in a bistable lattice [J]. Extreme Mechanics Letters , 2018 , 22 : 106 - 111 .
TAN X J , WANG B , CHEN S , et al . A novel cylindrical negative stiffness structure for shock isolation [J]. Composite Structures , 2019 , 214 : 397 - 405 .
DALELA S , BALAJI P S , JENA D P . A review on application of mechanical metamaterials for vibration control [J]. Mechanics of Advanced Materials and Structures , 2022 , 29 ( 22 ): 3237 - 3262 .
HA C S , LAKES R S , PLESHA M E . Design,fabrication,and analysis of lattice exhibiting energy absorption via snap-through behavior [J]. Materials & Design , 2018 , 141 : 426 - 437 .
TAN X J , WANG B , WANG L C , et al . Effect of beam configuration on its multistable and negative stiffness properties [J]. Composite Structures , 2022 , 286 : 115308 .
LI Q , YANG D Q , REN C H , et al . A systematic group of multidirectional buckling-based negative stiffness metamaterials [J]. International Journal of Mechanical Sciences , 2022 , 232 : 107611 .
GUO S , GAO R J , TIAN X Y , et al . A 3D metamaterial with negative stiffness for six-directional energy absorption and cushioning [J]. Thin-Walled Structures , 2022 , 180 : 109963 .
朱翔 , 尹曜 , 王蕊 , 等 . 泡沫铝填充薄壁铝合金多胞构件与单胞构件吸能性能研究 [J]. 工程力学 , 2021 , 38 ( 5 ): 247 - 256 .
ZHU Xiang , YIN Yao , WANG Rui , et al . Energy absorption performance of thin-wall aluminum alloy multi-cell and single-cell components filled with aluminum foam [J]. Engineering Mechanics , 2021 , 38 ( 5 ): 247 - 256 . (In Chinese)
WANG Z G . Recent advances in novel metallic honeycomb structure [J]. Composites Part B:Engineering , 2019 , 166 : 731 - 741 .
HUA J , LEI H S , GAO C F , et al . Parameters analysis and optimization of a typical multistable mechanical metamaterial [J]. Extreme Mechanics Letters , 2020 , 35 : 100640 .
GAO R J , GUO S , TIAN X Y , et al . A negative-stiffness based 1D metamaterial for bidirectional buffering and energy absorption with state recoverable characteristic [J]. Thin-Walled Structures , 2021 , 169 : 108319 .
ZHANG Y , TICHEM M , VAN KEULEN F . Rotational snap-through behavior of multi-stable beam-type metastructures [J]. International Journal of Mechanical Sciences , 2021 , 193 : 106172 .
REN C H , LI Q , YANG D Q . Quasi-static and sound insulation performance of a multifunctional cylindrical cellular shell with bidirectional negative-stiffness metamaterial cores [J]. International Journal of Mechanical Sciences , 2020 , 180 : 105662 .
BERTOLDI K . Harnessing instabilities to design tunable architected cellular materials [J]. Annual Review of Materials Research , 2017 , 47 ( 1 ): 51 - 61 .
CHEN S , TAN X J , HU J Q , et al . Continuous carbon fiber reinforced composite negative stiffness mechanical metamaterial for recoverable energy absorption [J]. Composite Structures , 2022 , 288 : 115411 .
CORREA D M , KLATT T , CORTES S , et al . Negative stiffness honeycombs for recoverable shock isolation [J]. Rapid Prototyping Journal , 2015 , 21 ( 2 ): 193 - 200 .
邓二杰 , 刘彦琦 , 宋春芳 . 负刚度蜂窝单胞结构制备及压缩性能 [J]. 复合材料学报 , 2022 , 39 ( 5 ): 2161 - 2171 .
DENG Erjie , LIU Yanqi , SONG Chunfang . Preparation and compression properties of negative stiffness honeycomb cell structure [J]. Acta Materiae Compositae Sinica , 2022 , 39 ( 5 ): 2161 - 2171 . (In Chinese)
LIU Y Q , JIANG W , HU W M , et al . Compressive strength and energy absorption characteristics of the negative stiffness honeycomb cell structure [J]. Materials Today Communications , 2023 , 35 : 105498 .
TAN X J , CHEN S , ZHU S W , et al . Reusable metamaterial via inelastic instability for energy absorption [J]. International Journal of Mechanical Sciences , 2019 , 155 : 509 - 517 .
TAN X J , WANG L C , ZHU S W , et al . A general strategy for performance enhancement of negative stiffness mechanical metamaterials [J]. European Journal of Mechanics / A Solids , 2022 , 96 : 104702 .
WANG X , YUE Z S , XU X , et al . Ballistic impact response of elastomer-retrofitted corrugated core sandwich panels [J]. International Journal of Impact Engineering , 2023 , 175 : 104545 .
HE Q , LI L Z , JING X W , et al . Impact resistance analysis and multi-objective optimization of polyurea-coated auxetic honeycomb sandwich panels [J]. Materials Today Communications , 2023 , 35 : 105577 .
QIU J , LANG J H , SLOCUM A H . A curved-beam bistable mechanism [J]. Journal of Microelectromechanical Systems , 2004 , 13 ( 2 ): 137 - 146 .
XIA F K , PANG T , SUN G Y , et al . Longitudinal bending of corrugated sandwich panels with cores of various shapes [J]. Thin-Walled Structures , 2022 , 173 : 109001 .
查一斌 , 马其华 , 周天俊 . 准静态径向压缩载荷下碳纤维缠绕薄壁铝管吸能特性分析 [J]. 机械强度 , 2020 , 42 ( 6 ): 1430 - 1437 .
CHA Yibin , MA Qihua , ZHOU Tianjun . Analysis of energy absorption characteristics of al-cfrp hybrid tubes under quasi-static radial compression [J]. Journal of Mechanical Strength , 2020 , 42 ( 6 ): 1430 - 1437 . (In Chinese)
CHEN S , TAN X J , HU J Q , et al . A novel gradient negative stiffness honeycomb for recoverable energy absorption [J]. Composites Part B: Engineering , 2021 , 215 : 108745 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构