浏览全部资源
扫码关注微信
新疆大学 电气工程学院,乌鲁木齐 830017
孙梦,女,1999年生,山东菏泽人,硕士研究生;主要研究方向为机械故障诊断与信号处理;E-mail:2947017914@qq.com。
高丙朋(通信作者),男,1979年生,山东临沂人,硕士,副教授,硕士研究生导师;主要研究方向为智能故障检测与诊断;E-mail:xjugaobp@xju.edu.cn。
收稿日期:2023-09-08,
修回日期:2023-11-30,
纸质出版日期:2025-06-15
移动端阅览
孙梦,高丙朋,程静. 基于改进共振稀疏分解的滚动轴承早期故障特征提取方法[J]. 机械强度,2025,47(6):17-26.
GAO Bingpeng,CHENG Jing. A feature extraction method based on improved resonance sparse decomposition for early faults in rolling bearings[J].Journal of Mechanical Strength,2025,47(6):17-26.
孙梦,高丙朋,程静. 基于改进共振稀疏分解的滚动轴承早期故障特征提取方法[J]. 机械强度,2025,47(6):17-26. DOI: 10.16579/j.issn.1001.9669.2025.06.003.
GAO Bingpeng,CHENG Jing. A feature extraction method based on improved resonance sparse decomposition for early faults in rolling bearings[J].Journal of Mechanical Strength,2025,47(6):17-26. DOI: 10.16579/j.issn.1001.9669.2025.06.003.
针对滚动轴承发生早期故障时其故障特征微弱,复杂运行环境下的故障特征容易被噪声淹没的问题,提出了基于改进的人工大猩猩部队(Improved Artificial Gorilla Troops Optimizer
IGTO)算法、优化共振稀疏分解(Resonance-based Sparse Signal Decomposition
RSSD)、多参数与稀疏最大谐波噪声比解卷积(Sparse Maximum Harmonics-to-noise-ratio Deconvolution
SMHD)方法相结合的早期故障诊断方法。首先,以低共振分量的平方包络谱相关峭度(Squared Envelope Spectral Correlated Kurtosis
SE-SCK)负值为目标函数,利用IGTO同时优化RSSD的品质因子
<math id="M1"><mi>Q</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=82728718&type=
2.96333337
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=82728707&type=
2.11666679
、权重系数
<math id="M2"><mi>λ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=82728721&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=82728735&type=
1.94733346
和拉格朗日乘子
<math id="M3"><mi>μ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=82728736&type=
2.87866688
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=82728711&type=
2.03200006
,实现小波基函数和耗散函数的最优匹配,以获得富含故障信息的最优低共振分量;其次,将其输入SMHD进行滤波处理;最后,进行包络谱分析提取故障特征。算法对比试验表明,IGTO算法寻优性能显著提高;仿真和XJTU-SY轴承全寿命周期故障信号试验结果表明,所提方法更能有效地提取滚动轴承早期微弱故障特征。
To overcome the difficulty in early fault diagnosis with weak fault characteristics of rolling bearings that are easily drowned out by noise in the complex operation environment
an early fault diagnosis method was proposed by integrating the improved artificial gorilla troops optimizer (IGTO) algorithm
the optimized resonance-based sparse signal decomposition (RSSD)
multi-parameter and sparse maximum harmonics-to-noise-ratio deconvolution (SMHD) method. Firstly
taking the squared envelope spectrum correlated kurtosis (SE-SCK) negative value of the low resonance component as the objective function
IGTO was used to simultaneously optimize the quality factor
<math id="M4"><mi>Q</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=82728738&type=
2.87866688
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=82728724&type=
2.37066650
weight coefficient
<math id="M5"><mi>λ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=82728726&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=82728727&type=
1.52400005
and Lagrange multiplier
<math id="M6"><mi>μ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=82728715&type=
2.96333337
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=82728716&type=
1.77800000
of RSSD
for the achievement of the optimal matching of wavelet basis function and dissipation function. Secondly
the obtained optimal low resonance component was inputed into SMHD for filtering processing. Finally
the fault features were extracted by the perform envelope spectrum analysis. The algorithm comparison experiments show that the proposed IGTO algorithm has significantly improved optimization performance. The results of simulation and XJTU-SY bearing full life cycle fault signal test show that the proposed method is more useful in extracting early weak fault characteristics of bearings.
TIAN J , WANG D , CHEN L , et al . A stable adaptive adversarial network with exponential adversarial strategy for bearing fault diagnosis [J]. IEEE Sensors Journal , 2022 , 22 ( 10 ): 9754 - 9762 .
XIAO C A , YU J B . Adaptive swarm decomposition algorithm for compound fault diagnosis of rolling bearings [J]. IEEE Transactions on Instrumentation and Measurement , 2023 , 72 : 3502514 .
PENG D M , JIANG X X , SONG Q Y , et al . An enhanced sparse filtering fusion method for bearing fault diagnosis [C]// 2022 IEEE International Conference on Prognostics and Health Management (ICPHM) . New York : IEEE , 2022 : 203 - 208 .
SHI J J , SU Z , QIN H Y , et al . Generalized variable-step multiscale lempel-ziv complexity:a feature extraction tool for bearing fault diagnosis [J]. IEEE Sensors Journal , 2022 , 22 ( 15 ): 15296 - 15305 .
翁敏超 , 王海瑞 , 朱贵富 . 小波变换和深度残差收缩网络在齿轮箱故障诊断中的应用 [J]. 机械科学与技术 , 2024 , 43 ( 5 ): 790 - 797 .
WANG Minchao , WANG Hairui , ZHU Guifu . Application of wavelet transform and deep residual shrinkage network in gearbox fault diagnosis [J]. Mechanical Science and Technology for Aerospace Engineering , 2024 , 43 ( 5 ): 790 - 797 . (In Chinese)
刘文朋 , 杨绍普 , 李强 , 等 . 一种自适应共振解调方法及其在铁路轴承故障诊断中的应用 [J]. 振动与冲击 , 2021 , 40 ( 18 ): 86 - 93 .
LIU Wenpeng , YANG Shaopu , LI Qiang , et al . Adaptive resonance demodulation method and its application in the fault diagnosis of railway bearings [J]. Journal of Vibration and Shock , 2021 , 40 ( 18 ): 86 - 93 . (In Chinese)
SONG Q Y , JIANG X X , WANG S , et al . Self-adaptive multivariate variational mode decomposition and its application for bearing fault diagnosis [J]. IEEE Transactions on Instrumentation and Measurement , 2022 , 71 : 3503913 .
SELESNICK I W . Resonance-based signal decomposition: a new sparsity-enabled signal analysis method [J]. Signal Processing , 2011 , 91 ( 12 ): 2793 - 2809 .
陈向民 , 于德介 , 罗洁思 . 基于信号共振稀疏分解的包络解调方法及其在轴承故障诊断中的应用 [J]. 振动工程学报 , 2012 , 25 ( 6 ): 628 - 636 .
CHEN Xiangmin , YU Dejie , LUO Jiesi . Envelope demodulation method based on resonance-based sparse signal decomposition and its application in roller bearing fault diagnosis [J]. Journal of Vibration Engineering , 2012 , 25 ( 6 ): 628 - 636 . (In Chinese)
黄文涛 , 付强 , 窦宏印 . 基于自适应优化品质因子的共振稀疏分解方法及其在行星齿轮箱复合故障诊断中的应用 [J]. 机械工程学报 , 2016 , 52 ( 15 ): 44 - 51 .
HUANG Wentao , FU Qiang , DOU Hongyin . Resonance-based sparse signal decomposition based on the quality factors optimization and its application of composite fault diagnosis to planetary gearbox [J]. Journal of Mechanical Engineering , 2016 , 52 ( 15 ): 44 - 51 . (In Chinese)
张守京 , 慎明俊 , 杨静雯 , 等 . 改进的共振稀疏分解方法及其在滚动轴承复合故障诊断中的应用 [J]. 中国机械工程 , 2022 , 33 ( 14 ): 1697 - 1706 .
ZHANG Shoujing , SHEN Mingjun , YANG Jingwen , et al . Improved RSSD and its applications to composite fault diagnosis of rolling bearings [J]. China Mechanical Engineering , 2022 , 33 ( 14 ): 1697 - 1706 . (In Chinese)
曹亚磊 , 杜应军 , 韦广 , 等 . SGMD-MOMEDA 滚动轴承故障特征提取方法研究 [J]. 机械强度 , 2022 , 44 ( 6 ): 1279 - 1285 .
CAO Yalei , DU Yingjun , WEI Guang , et al . Research on rolling bearing fault feature extraction method with SGMD-MOMEDA [J]. Journal of Mechanical Strength , 2022 , 44 ( 6 ): 1279 - 1285 . (In Chinese)
魏晓鹏 , 高丙朋 . 基于优化MCKD-VMD与互相关谱的轴承复合故障诊断 [J]. 组合机床与自动化加工技术 , 2023 ( 3 ): 78 - 81 .
WEI Xiaopeng , GAO Bingpeng . Compound fault diagnosis of bearings based on optimized MCKD-VMD and cross-correlation spectrum [J]. Modular Machine Tool & Automatic Manufacturing Technique , 2023 ( 3 ): 78 - 81 . (In Chinese)
MIAO Y H , ZHAO M , LIN J , et al . Sparse maximum harmonics-to-noise-ratio deconvolution for weak fault signature detection in bearings [J]. Measurement Science and Technology , 2016 , 27 ( 10 ): 105004 .
陈祥龙 , 冯辅周 , 张兵志 , 等 . 基于平方包络谱相关峭度的最优共振解调诊断滚动轴承故障 [J]. 机械工程学报 , 2018 , 54 ( 21 ): 90 - 100 .
CHEN Xianglong , FENG Fuzhou , ZHANG Bingzhi , et al . Rolling bearing fault diagnosis with optimal resonant frequency band demodulation based on squared envelope spectruml correlated kurtosis [J]. Journal of Mechanical Engineering , 2018 , 54 ( 21 ): 90 - 100 . (In Chinese)
ABDOLLAHZADEH B , SOLEIMANIAN GHAREHCHOPOGH F S , MIRJALILI S . Artificial gorilla troops optimizer:a new nature-inspired metaheuristic algorithm for global optimization problems [J]. International Journal of Intelligent Systems , 2021 , 36 ( 10 ): 5887 - 5958 .
HUANG W T , SUN H J , WANG W J . Resonance-based sparse signal decomposition and its application in mechanical fault diagnosis:a review [J]. Sensors , 2017 , 17 ( 6 ): 1279 .
唐贵基 , 朱星皓 , 王晓龙 , 等 . 基于VEITD和OSMHD的风电机组轴承损伤识别 [J]. 电力自动化设备 , 2023 , 43 ( 6 ): 101 - 107 .
TANG Guiji , ZHU Xinghao , WANG Xiaolong , et al . Wind turbine bearing damage identification based on VEITD and OSMHD [J]. Electric Power Automation Equipment , 2023 , 43 ( 6 ): 101 - 107 . (In Chinese)
雷亚国 , 韩天宇 , 王彪 , 等 . XJTU-SY滚动轴承加速寿命试验数据集解读 [J]. 机械工程学报 , 2019 , 55 ( 16 ): 1 - 6 .
LEI Yaguo , HAN Tianyu , WANG Biao , et al . XJTU-SY rolling element bearing accelerated life test datasets:a tutorial [J]. Journal of Mechanical Engineering , 2019 , 55 ( 16 ): 1 - 6 . (In Chinese)
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构