浏览全部资源
扫码关注微信
北京建筑大学 机电与车辆工程学院,北京 102616
周涛,男,2000年生,安徽安庆人,在读硕士研究生;主要研究方向为故障诊断;E-mail:2453932709@qq.com。
姚德臣,男,1981年生,山东德州人,教授,硕士研究生导师;主要研究方向为机械系统动力学建模分析、旋转机械监测与诊断的理论与应用研究、轨道交通关键系统状态检测装备研发;E-mail:yaodechen@bucea.edu.cn。
收稿日期:2023-08-30,
修回日期:2023-10-23,
纸质出版日期:2025-05-15
移动端阅览
周涛,姚德臣,杨建伟. 基于通道和空间重组网络的滚动轴承故障诊断[J]. 机械强度,2025,47(5):19-28.
ZHOU Tao,YAO Dechen,YANG Jianwei. Fault diagnosis of rolling bearing based on channel and spatial reconstruction networks[J]. Journal of Mechanical Strength,2025,47(5):19-28.
周涛,姚德臣,杨建伟. 基于通道和空间重组网络的滚动轴承故障诊断[J]. 机械强度,2025,47(5):19-28. DOI: 10.16579/j.issn.1001.9669.2025.05.003.
ZHOU Tao,YAO Dechen,YANG Jianwei. Fault diagnosis of rolling bearing based on channel and spatial reconstruction networks[J]. Journal of Mechanical Strength,2025,47(5):19-28. DOI: 10.16579/j.issn.1001.9669.2025.05.003.
由于在实际工程中采集到的故障振动数据可能会伴随噪声,传统的诊断模型难以识别故障类别,针对此问题,提出一种基于通道和空间重组卷积与渐进式卷积神经网络(Channel and Spatial Reconstruction and Progressive Convolutional Neural Networks
CSRP-CNN)的滚动轴承故障诊断研究方法。所提模型利用通道和空间重组卷积(Channel and Spatial Reconstruction Convolution
CSConv)减少故障特征中通道和空间的冗余信息,降低复杂性和计算量以提高性能;使用卷积注意力模块(Convolutional Block Attention Module
CBAM)在通道和空间维度进行注意力增强操作,使模型关注重要的故障特征信息;在网络浅层采用渐进式卷积网络结构,将之前的故障特征信息与当前的输入进行融合,获取更加丰富的特征信息。通过凯斯西储大学(Case Western Reserve University
CWRU)和机械故障综合模拟试验平台(Machinery Fault Simulator Magnum
MFS-MG)两种不同的数据集对CSRP-CNN进行性能评估。经过噪声测试和消融试验,验证了CSRP-CNN具有较强的鲁棒性,以及CSConv、CBAM和渐进式卷积神经网络(Progressive Convolutional Neural Network
PCNN)对所提模型抗噪性能的影响。
Since the fault vibration data collected in the real engineering may be accompanied by noise
traditional diagnostic models are difficult to identify fault categories. To address this problem
a rolling bearing fault diagnosis research method based on channel and spatial reconstruction and progressive convolutional neural networks (CSRP-CNN) was proposed. The model utilized channel and spatial reconstruction convolution (CSConv) to reduce the redundant information of channels and space in fault features
and reduced the complexity and computation to improve the performance; using the convolutional block attention module (CBAM)
attention enhancement operation was carried out in the channel and spatial dimensions to make the model pay attention to the important fault feature information; and the progressive convolutional network structure was used in the shallow layer of the network
which would fuse the previous fault feature information with the current input to obtain the richer feature information. The performance of CSRP-CNN was evaluated by two different datasets of Case Western Reserve University (CWRU) and machinery fault simulator magnum (MFS-MG). After the noise and ablation tests
it is verified that CSRP-CNN has strong robustness and the effects of CSConv
CBAM and progressive convolutional neural network (PCNN) on the model noise immunity performance.
冯志鹏 , 宋希庚 , 薛冬新 , 等 . 旋转机械振动故障诊断理论与技术进展综述 [J]. 振动与冲击 , 2001 , 20 ( 4 ): 36 - 39 .
FENG Zhipeng , SONG Xigeng , XUE Dongxin , et al . Survey of vibration fault diagnosis of rotational machinery [J]. Journal of Vibration and Shock , 2001 , 20 ( 4 ): 36 - 39 . (In Chinese)
周付明 , 刘武强 , 杨小强 , 等 . 基于精细化改进多尺度快速样本熵的旋转机械故障诊断方法研究 [J]. 机械强度 , 2023 , 45 ( 1 ): 1 - 8 .
ZHOU Fuming , LIU Wuqiang , YANG Xiaoqiang , et al . Research on fault diagnosis method of rotating machinery based on refined improved multiscale fast sample entropy [J]. Journal of Mechanical Strength , 2023 , 45 ( 1 ): 1 - 8 . (In Chinese)
刘恒畅 , 姚德臣 , 杨建伟 , 等 . 基于多分支深度可分离卷积神经网络的滚动轴承故障诊断研究 [J]. 振动与冲击 , 2021 , 40 ( 10 ): 95 - 102 .
LIU Hengchang , YAO Dechen , YANG Jianwei , et al . Fault diagnosis of rolling bearings based on a multi-branch depth separable convolutional neural network [J]. Journal of Vibration and Shock , 2021 , 40 ( 10 ): 95 - 102 . (In Chinese)
SURENDRAN R , IBRAHIM K O , ANDRES T R C . Deep learning based intelligent industrial fault diagnosis model [J]. Computers ,Materials & Continua, 2022 , 70 ( 3 ): 6323 - 6338 .
杨大炼 , 雷家乐 , 蒋玲莉 . 基于局部双谱和卷积神经网络的弧齿锥齿轮故障诊断 [J]. 机械强度 , 2022 , 44 ( 6 ): 1286 - 1292 .
YANG Dalian , LEI Jiale , JIANG Lingli . Fault diagnosis of spiral bevel gear based on local bispectrum and convolutional neural network [J]. Journal of Mechanical Strength , 2022 , 44 ( 6 ): 1286 - 1292 . (In Chinese)
YAN S , SHAO H D , XIAO Y M , et al . Semi-supervised fault diagnosis of machinery using LPS-DGAT under speed fluctuation and extremely low labeled rates [J]. Advanced Engineering Informatics , 2022 , 53 : 101648 .
陈露萌 , 李一鸣 , 黄民 . 一种抗噪声轴承故障诊断方法 [J]. 北京信息科技大学学报(自然科学版) , 2023 , 38 ( 2 ): 23 - 31 .
CHEN Lumeng , LI Yiming , HUANG Min . An anti-noise bearing fault diagnosis method [J]. Journal of Beijing Information Science & Technology University (Science and Technolgy Edition) , 2023 , 38 ( 2 ): 23 - 31 . (In Chinese)
JIN Y R , QIN C J , ZHANG Z N , et al . A multi-scale convolutional neural network for bearing compound fault diagnosis under various noise conditions [J]. Science China Technological Sciences , 2022 , 65 ( 11 ): 2551 - 2563 .
HAN S Y , SHAO H D , CHENG J S , et al . Convformer-NSE: a novel end-to-end gearbox fault diagnosis framework under heavy noise using joint global and local information [J]. IEEE/ASME Transactions on Mechatronics , 2023 , 28 ( 1 ): 340 - 349 .
董荣 , 徐育为 , 龙志宏 , 等 . 采用大核注意力机制的抗噪轴承故障诊断模型 [J]. 噪声与振动控制 , 2023 , 43 ( 2 ): 162 - 168 .
DONG Rong , XU Yuwei , LONG Zhihong , et al . Fault diagnosis model of noise-resistant bearings using large kernel attention mechanism [J]. Noise and Vibration Control , 2023 , 43 ( 2 ): 162 - 168 . (In Chinese)
WOO S , PARK J , LEE J Y , et al . CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision (ECCV) . Cham : Springer International Publishing , 2018 : 3 - 19 .
LIANG S W , HUANG Z Z , LIANG M F , et al . Instance enhancement batch normalization:an adaptive regulator of batch noise [J]. Proceedings of the AAAI Conference on Artificial Intelligence , 2020 , 34 ( 4 ): 4819 - 4827 .
刘奇 , 王衍学 . 基于同步挤压提取变换的滚动轴承故障诊断研究 [J]. 机械传动 , 2021 , 45 ( 1 ): 123 - 128 .
LIU Qi , WANG Yanxue . Research on fault diagnosis of rolling bearing based on synchrosqueezing extracting transform [J]. Journal of Mechanical Transmission , 2021 , 45 ( 1 ): 123 - 128 . (In Chinese)
刘畅 , 王衍学 , 杨建伟 . 基于FOA的变分模态分解在轴承故障诊断中的应用 [J]. 机械传动 , 2020 , 44 ( 5 ): 146 - 154 .
LIU Chang , WANG Yanxue , YANG Jianwei . Application of variational mode decomposition based on the FOA and in bearing fault diagnosis [J]. Journal of Mechanical Transmission , 2020 , 44 ( 5 ): 146 - 154 . (In Chinese)
MAATEN L V D , HINTON G . Visualizing data using t -SNE [J]. Journal of Machine Learning Research , 2008 , 9 ( 11 ): 2579 - 2605 .
ARIAS-DUART A , MARIOTTI E , GARCIA-GASULLA D , et al . A confusion matrix for evaluating feature attribution methods [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) . New York : IEEE , 2023 : 3709 - 3714 .
GIRSHICK R . Fast R-CNN [C]// Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV) . New York : IEEE , 2015 : 1440 - 1448 .
LI J F , WEN Y , HE L H . SCConv: spatial and channel reconstruction convolution for feature redundancy [C]// Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . New York : IEEE , 2023 : 6153 - 6162 .
0
浏览量
24
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构