浏览全部资源
扫码关注微信
南京航空航天大学 飞行器设计先进技术国防重点学科实验室,南京 210016
牛芳淦,男,1998年生,安徽六安人,硕士研究生;主要研究方向为飞行器设计与优化;E-mail:niufanggan@163.com。
王宇(通信作者),女,1981年生,辽宁凌源人,副教授;主要研究方向为飞行器多学科设计与优化、新概念飞行器、变体机翼设计;E-mail:wangyu@nuaa.edu.cn。
收稿日期:2023-09-26,
修回日期:2023-11-01,
纸质出版日期:2025-04-15
移动端阅览
牛芳淦,马文圆,杨超,等. 基于深度神经网络的超声速民机机翼结构设计[J]. 机械强度,2025,47(4):122-130.
NIU Fanggan,MA Wenyuan,YANG Chao,et al. Wing structural design of supersonic civil aircraft based on deep neural network[J]. Journal of Mechanical Strength,2025,47(4):122-130.
牛芳淦,马文圆,杨超,等. 基于深度神经网络的超声速民机机翼结构设计[J]. 机械强度,2025,47(4):122-130. DOI: 10.16579/j.issn.1001.9669.2025.04.015.
NIU Fanggan,MA Wenyuan,YANG Chao,et al. Wing structural design of supersonic civil aircraft based on deep neural network[J]. Journal of Mechanical Strength,2025,47(4):122-130. DOI: 10.16579/j.issn.1001.9669.2025.04.015.
目前对超声速民机机翼的研究主要侧重于低声爆设计技术和超声速减阻技术,针对机翼结构设计的研究相对较少。因此,提出了一种面向超声速民机初步设计阶段机翼结构设计的多级优化方法,包括机翼结构布局参数化建模、结构尺寸优化有限元模型的自动生成、深度神经网络代理模型的搭建与训练,以及基于深度神经网络代理模型进行优化求解。分析结果表明,提出的优化策略能够对超声速民机机翼结构进行良好的快速设计,深度神经网络模型相比于传统代理模型具有更高的预测精度,提高了机翼结构初步设计的效率。
At present
the research on supersonic civil aircraft wings mainly focuses on the low sonic boom design and supersonic drag reduction technologies. There are relatively few studies on the wing structural design. Therefore
a multi-level optimization method for the wing structural design in the preliminary design stage of supersonic civil aircrafts was proposed. It included the parametric modeling of the wing structural layout
the automatic generation of the finite element model for the structural size optimization
construction and training of a surrogate model for the deep neural network. And the optimization was solved based on the deep neural network. The analysis results show that the proposed optimization strategy could quickly design the wing structure of the supersonic civil aircraft. The deep neural network model has higher prediction accuracy than the traditional surrogate model. Thus
the proposed approach can improve the efficiency of the preliminary design for wing structure.
CHUDOBA B , COLEMAN G , ROBERTS K , et al . What price supersonic speed?A design anatomy of supersonic transportation-part 1 [C]// 45th AIAA Aerospace Sciences Meeting . Reston : AIAA , 2007 , 15 : 10355 - 10378 .
CANDEL S . Concorde and the future of supersonic transport [J]. Journal of Propulsion and Power , 2004 , 20 ( 1 ): 59 - 68 .
PEIREN G . Tu-144 supersonic transport [J]. Civil Aircraft Design and Research , 2015 ( 3 ): 99 - 102 .
CONWAY E M . High-speed dreams:NASA and the technopolitics of supersonic transportation,1945-1999 [M]. Baltimore : Johns Hopkins University Press , 2005 : 866 - 867 .
LIEBHARDT B , LÜTJENS K , UENO A , et al . JAXA’s S4 supersonic low-boom airliner-a collaborative study on aircraft design,sonic boom simulation,and market prospects [C]// AIAA Aviation 2020 Forum . Reston : AIAA , 2020 : 241349 .
MICHAEL B . Conceptual design of a quiet supersonic technology airliner [C]// AIAA Aviation 2019 Forum . Reston : AIAA , 2019 : 11 - 18 .
MAGEE T E , SERRANO L , MENDOZA R , et al . X-59 CFD and wind tunnel data comparisons [C]// AIAA Aviation 2023 Forum . Reston : AIAA , 2023 : 313279 .
丁玉临 , 韩忠华 , 乔建领 , 等 . 超声速民机总体气动布局设计关键技术研究进展 [J]. 航空学报 , 2023 , 44 ( 2 ): 20 - 46 .
DING Yulin , HAN Zhonghua , QIAO Jianling , et al . Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft [J]. Acta Aeronautica et Astronautica Sinica , 2023 , 44 ( 2 ): 20 - 46 . (In Chinese)
袁吉森 , 孙爵 , 李玲玉 , 等 . 超声速飞机层流布局设计与评估技术进展 [J]. 航空学报 , 2022 , 43 ( 11 ): 63 - 98 .
YUAN Jishen , SUN Jue , LI Lingyu , et al . Progress of supersonic aircraft laminar flow layout design and evalution technologies [J]. Acta Aeronautica et Astronautica Sinica , 2022 , 43 ( 11 ): 63 - 98 . (In Chinese)
SERAJ S , MARTINS J R R A . Aerodynamic shape optimization of a supersonic transport considering low-speed stability [C]// AIAA Sciece and Technology Forum and Exposition , AIAA Sci Tech Forum 2022 . Reston : AIAA ,2022: 270339 .
LI W , GEISELHART K . Integration of low-fidelity MDO and CFD-Based redesign of low-boom supersonic transports [J]. AIAA Journal , 2021 , 59 ( 10 ): 3923 - 3936 .
ESPINAL D , IM H , LEE B , et al . Supersonic bi-directional flying wing,Part II:conceptual design of a high speed civil transport [C]// 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition . Reston : AIAA , 2010 : 82585 .
MELLQUIST E C , BENDIKSEN O O . Analysis of the transonic flutter of supersonic transport wings [C]// 56th AIAA/ASCE/AHS/ASC Structures , Structural Dynamics,and Materials Conference 2015 . Reston : AIAA ,2015: 112819 .
唐佳栋 , 娄斌 , 叶尚军 , 等 . 基于卷积神经网络和松鼠优化算法的机翼结构混合优化设计 [J]. 力学季刊 , 2022 , 43 ( 2 ): 217 - 226 .
TANG Jiadong , LOU Bin , YE Shangjun , et al . Hybrid optimization design of wing structure based on convolution neural network and squirrel search algorithm [J]. Chinese Quarterly of Mechanics , 2022 , 43 ( 2 ): 217 - 226 . (In Chinese)
屈经国 , 彭博 , 易贤 , 等 . 基于深度神经网络的任意翼型结冰预测方法 [J]. 空气动力学学报 , 2023 , 41 ( 7 ): 48 - 55 .
QU Jingguo , PENG Bo , YI Xian , et al . Icing prediction method for arbitrary airfoil using deep neural networks [J]. Acta Aerodynamica Sinica , 2023 , 41 ( 7 ): 48 - 55 . (In Chinese)
DENG L , WANG Y Q , LIU Y , et al . A CNN-based vortex identification method [J]. Journal of Visualization , 2019 , 22 ( 1 ): 65 - 78 .
SÁNCHEZ-SÁNCHEZ C , IZZO D . Real-time optimal control via deep neural networks:study on landing problems [J]. Journal of Guidance,Control,and Dynamics , 2018 , 41 ( 5 ): 1122 - 1135 .
姚卫星 , 顾怡 . 飞机结构设计 [M]. 北京 : 国防工业出版社 , 2016 : 56 - 57 .
YAO Weixing , GU Yi . Aircraft structural design [M]. Beijing : National Defense Industry Press , 2016 : 56 - 57 . (In Chinese)
刘磊 . 空天飞机重量估算方法研究 [D]. 南京 : 南京航空航天大学 , 2016 : 43 - 44 .
LIU Lei . Research on weight estimation method of aerospace aircraft [D]. Nanjing : Nanjing University of Aeronautics and Astronautics , 2016 : 43 - 44 . (In Chinese)
王宝忠 . 飞机设计手册:第十册:结构设计 [M]. 北京 : 航空工业出版社 , 2000 : 410 - 420 .
WANG Baozhong . Aircraft design manual:Volume 10:structural design [M]. Beijing : Aviation Industry Publishing House , 2000 : 410 - 420 . (In Chinese)
Microsoft . Neural network intelligence [EB/OL].( 2019-09-01 ). https://www.microsoft.com/en-us/research/project/neural-networ- k-intelligence/ https://www.microsoft.com/en-us/research/project/neural-networ-k-intelligence/ .
Google . TensorFlow: an end-to-end source machine learning platform [EB/OL]. ( 2019-08-10 ). https://opensource.google/projects/tensorflow https://opensource.google/projects/tensorflow .
NAIR V , HINTON G E . Rectified linear units improve restricted Boltzmann machines [C]// 27th International Conference on Machine Learning ICML 2010 , 2010 : 81654(807-814 .
NEWEY W K . Adaptive estimation of regression models via moment restrictions [J]. Journal of Econometrics , 1988 , 38 ( 3 ): 301 - 339 .
范周伟 , 余雄庆 , 王朝 , 等 . 基于深度神经网络的客机总体设计参数敏感性分析 [J]. 航空学报 , 2021 , 42 ( 4 ): 524353 .
FAN Zhouwei , YU Xiongqing , WANG Chao , et al . Sensitivity analysis of key design parameters of commercial aircraft using deep neural network [J]. Acta Aeronautica et Astronautica Sinica , 2021 , 42 ( 4 ): 524353 . (In Chinese)
LOFFE S , SZEGEDY C . Batch normalization:accelerating deep network training by reducing internal covariate shift [C]// 32nd International Conference on Machine Learning , ICML 2015 . 2015 , 1 : 119782(448-456 .
BOUHLEL M A , HWANG J T , BARTOLI N , et al . A Python surrogate modeling framework with derivatives [J]. Advances in Engineering Software , 2019 , 135 : 102662 .
GUOFEI 9987 . Scikit-Opt [EB/OL].( 2023-09-14 ). https://github.com/guofei9987/scikit-opt https://github.com/guofei9987/scikit-opt .
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构