浏览全部资源
扫码关注微信
1.武汉理工大学 交通与物流工程学院,港口装卸技术交通运输行业重点实验室,武汉 430063
2.中交一航局安装工程有限公司,天津 300457
靳婷,女,1998年生,山西运城人,硕士研究生;主要研究方向为金属疲劳寿命预测;E-mail:1459929157@qq.com。
袁建明(通信作者),男,1977年生,湖北武汉人,教授,博士研究生导师;主要研究方向为现代机械设计及理论、港口物流新技术及装备、港口装备智能运行维护;E-mail:13871511072@163.com。
收稿日期:2023-09-02,
修回日期:2023-10-20,
纸质出版日期:2025-04-15
移动端阅览
靳婷,王晓磊,刘宇,等. 基于IPSO-PF算法的疲劳裂纹扩展预测[J]. 机械强度,2025,47(4):47-53.
JIN Ting,WANG Xiaolei,LIU Yu,et al. Fatigue crack growth prediction based on IPSO-PF algorithm[J]. Journal of Mechanical Strength,2025,47(4):47-53.
靳婷,王晓磊,刘宇,等. 基于IPSO-PF算法的疲劳裂纹扩展预测[J]. 机械强度,2025,47(4):47-53. DOI: 10.16579/j.issn.1001.9669.2025.04.006.
JIN Ting,WANG Xiaolei,LIU Yu,et al. Fatigue crack growth prediction based on IPSO-PF algorithm[J]. Journal of Mechanical Strength,2025,47(4):47-53. DOI: 10.16579/j.issn.1001.9669.2025.04.006.
传统Paris公式预测裂纹扩展时忽略了裂纹扩展过程中各种不确定因素的影响,导致预测的裂纹扩展过程与真实的裂纹扩展过程相差较大。为提高疲劳裂纹扩展预测的精度,提出了一种基于改进粒子群优化粒子滤波(Improved Particle Swarm Optimization-Particle Filtering
IPSO-PF)算法的疲劳裂纹扩展预测方法。首先,在粒子滤波(Particle Filtering
PF)算法的框架上,利用粒子群优化(Particle Swarm Optimization
PSO)算法对基于观测信息更新后的部分粒子进行优化,保持大权值的粒子状态不变,将小权值的粒子趋向于高似然区域,设计了IPSO-PF算法;然后,将IPSO-PF算法与Paris公式结合,构建了基于Paris公式和IPSO-PF算法的疲劳裂纹扩展预测模型;最后,使用公开的2024-T351铝合金数据集对该模型的有效性进行了验证。结果表明,与传统PF算法相比,IPSO-PF算法能够提高粒子的多样性,使用IPSO-PF算法构建的裂纹扩展预测模型的预测误差为2.6%,优于基于PF算法的9.2%。
The traditional Paris formula ignores the influence of various uncertain factors in the crack growth process
which leads to a big difference between the predicted crack growth process and the real crack growth process. In order to improve the prediction accuracy of fatigue crack growth
a fatigue crack growth prediction method based on the improved particle swarm optimization particle filtering (IPSO-PF) algorithm was proposed. Firstly
based on the framework of the particle filtering (PF) algorithm
the particle swarm optimization (PSO) algorithm was used to optimize some particles based on the updated observation information, keeping the state of particles with large weights unchanged
and particles with small weights tend to high likelihood region
and IPSO-PF algorithm was designed. Then, combining IPSO-PF algorithm with Paris formula
a fatigue crack growth prediction model based on Paris formula and IPSO-PF algorithm was constructed. Finally
the validity of the model was verified by using the open 2024-T351 aluminum alloy data set. The results show that compared with the traditional PF algorithm
IPSO-PF algorithm can improve the diversity of particles. The prediction error of the crack growth prediction model based on IPSO-PF algorithm is 2.6%
which is better than 9.2% based on PF algorithm.
孙国芹 , 尚德广 , 王杨 . 金属多轴疲劳行为与寿命预测研究进展 [J]. 机械工程学报 , 2021 , 57 ( 16 ): 153 - 172 .
SUN Guoqin , SHANG Deguang , WANG Yang . Research progress on fatigue behavior and life prediction under multiaxial loading for metals [J]. Journal of Mechanical Engineering , 2021 , 57 ( 16 ): 153 - 172 . (In Chinese)
PARIS P C , ERDOGAN F . A critical analysis of crack propagation laws [J]. Journal of Basic Engineering , 1963 , 85 ( 4 ): 528 - 534 .
杨文猛 , 蒋玮 , 王杰 . 风力发电机齿轮疲劳裂纹扩展行为研究及寿命预测 [J]. 机械强度 , 2022 , 44 ( 5 ): 1214 - 1220 .
YANG Wenmeng , JIANG Wei , WANG Jie . Research on fatigue crack propagation behavior and life prediction of wind turbine gear [J]. Journal of Mechanical Strength , 2022 , 44 ( 5 ): 1214 - 1220 . (In Chinese)
CHEN J , YUAN S F , WANG H . On-line updating Gaussian process measurement model for crack prognosis using the particle filter [J]. Mechanical Systems and Signal Processing , 2020 , 140 : 106646 .
祝志远 , 黄小平 , 余宏淦 , 等 . 基于已有数据和粒子滤波的Paris参数估计和剩余寿命预测 [J]. 中国造船 , 2021 , 62 ( 2 ): 33 - 45 .
ZHU Zhiyuan , HUANG Xiaoping , YU Honggan , et al . Estimation of parameters in Paris model and prediction of residual life based on existing data and particle filter [J]. Shipbuilding of China , 2021 , 62 ( 2 ): 33 - 45 . (In Chinese)
LIU X , JIA Y , HE Z , et al . Hybrid residual fatigue life prediction approach for gear based on Paris law and particle filter with prior crack growth information [J]. Journal of Vibroengineering , 2017 , 19 ( 8 ): 5908 - 5919 .
关雪雪 . 预测结构性能退化的混合粒子滤波方法 [D]. 武汉 : 华中科技大学 , 2018 : 22 - 40 .
GUAN Xuexue . A combined particle filter method for predicting structural performance degradation [D]. Wuhan : Huazhong University of Science & Technology , 2018 : 22 - 40 . (In Chinese)
顾震华 . 基于Lamb波的结构疲劳裂纹监测及寿命预测方法研究 [D]. 无锡 : 江南大学 , 2021 : 41 - 58 .
GU Zhenhua . Research on structural fatigue crack monitoring and life prediction based on Lamb waves [D]. Wuxi : Jiangnan University , 2021 : 41 - 58 . (In Chinese)
杨伟博 , 袁慎芳 , 邱雷 , 等 . 基于辅助粒子滤波的疲劳裂纹扩展预测研究 [J]. 振动与冲击 , 2018 , 37 ( 5 ): 114 - 119 .
YANG Weibo , YUAN Shenfang , QIU Lei , et al . Prediction of fatigue crack propagation based on auxiliary particle filtering [J]. Journal of Vibration and Shock , 2018 , 37 ( 5 ): 114 - 119 . (In Chinese)
WANG T , BIN J , RENAUD G , et al . Probabilistic method for fatigue crack growth prediction with hybrid prior [J]. International Journal of Fatigue , 2022 , 157 : 106686 .
陈健 , 袁慎芳 , 王卉 , 等 . 基于高斯权值-混合建议分布粒子滤波的疲劳裂纹扩展预测 [J]. 航空学报 , 2017 , 38 ( 11 ): 168 - 176 .
CHEN Jian , YUAN Shenfang , WANG Hui , et al . Using Gaussian weighting-mixture proposal distribution particle filter for fatigue crack growth prediction [J]. Acta Aeronautica et Astronautica Sinica , 2017 , 38 ( 11 ): 168 - 176 . (In Chinese)
徐仁义 , 王航 , 彭敏俊 , 等 . 核电厂电动闸阀外漏故障预测方法研究 [J]. 哈尔滨工程大学学报 , 2022 , 43 ( 12 ): 1759 - 1765 .
XU Renyi , WANG Hang , PENG Minjun , et al . Fault prediction method of electric gate valve outer failure in nuclear power plants [J]. Journal of Harbin Engineering University , 2022 , 43 ( 12 ): 1759 - 1765 . (In Chinese)
文昌俊 , 陈哲 , 邵明颖 , 等 . 基于改进PSO-BP神经网络的干燥机可靠性预测 [J]. 机械强度 , 2023 , 45 ( 2 ): 504 - 508 .
WEN Changjun , CHEN Zhe , SHAO Mingying , et al . Reliability prediction of dryer based on improved PSO-BP neural network [J]. Journal of Mechanical Strength , 2023 , 45 ( 2 ): 504 - 508 . (In Chinese)
WU W F , NI C C . Statistical aspects of some fatigue crack growth data [J]. Engineering Fracture Mechanics , 2007 , 74 ( 18 ): 2952 - 2963 .
WU W F , NI C C . A study of stochastic fatigue crack growth modeling through experimental data [J]. Probabilistic Engineering Mechanics , 2003 , 18 ( 2 ): 107 - 118 .
PITT M K , SILVA R D S , GIORDANI P , et al . On some properties of Markov chain Monte Carlo simulation methods based on the particle filter [J]. Journal of Econometrics , 2012 , 171 ( 2 ): 134 - 151 .
李光保 , 高栋 , 路勇 , 等 . 基于改进神经网络和Fluent的气液固技术的内表面处理 [J]. 吉林大学学报(工学版) , 2024 , 54 ( 6 ): 1537 - 1547 .
LI Guangbao , GAO Dong , LU Yong , et al . Internal surface treatment of gas-liquid-solid technology based on improved neural network and Fluent [J]. Journal of Jilin University(Engineering and Technology Edition) , 2024 , 54 ( 6 ): 1537 - 1547 . (In Chinese)
0
浏览量
1
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构