浏览全部资源
扫码关注微信
1.南昌航空大学 无损检测技术教育部重点实验室,南昌 330063
2.西安热工研究院有限公司,西安 710054
3.华能江苏清洁能源分公司,南京 210015
樊梦,女,1998年生,江西南昌人,硕士研究生;主要研究方向为电磁无损检测信号处理;E-mail:251295173@qq.com。
胡博,女,1984年生,山东枣庄人,博士,教授;主要研究方向为电磁无损检测、电磁场数值计算;E-mail:cumtubo@163.com。
收稿日期:2023-03-14,
修回日期:2023-08-23,
纸质出版日期:2025-03-15
移动端阅览
樊梦,童博,高晨,等. 基于IWOA-BP算法的金属结构弱磁检测缺陷量化研究[J]. 机械强度,2025,47(3):113-120
FAN Meng,TONG Bo,GAO Chen,et al. Quantitative study on weak magnetic detection defects of metal structure based on IWOA-BP algorithm[J]. Journal of Mechanical Strength,2025,47(3):113-120.
樊梦,童博,高晨,等. 基于IWOA-BP算法的金属结构弱磁检测缺陷量化研究[J]. 机械强度,2025,47(3):113-120 DOI: 10.16579/j.issn.1001.9669.2025.03.014.
FAN Meng,TONG Bo,GAO Chen,et al. Quantitative study on weak magnetic detection defects of metal structure based on IWOA-BP algorithm[J]. Journal of Mechanical Strength,2025,47(3):113-120. DOI: 10.16579/j.issn.1001.9669.2025.03.014.
金属结构被广泛用于工业界,在役金属结构受拉压疲劳载荷易产生裂纹缺陷,为实现金属结构裂纹缺陷的定量化检测,研究了一种基于反向传播(Back Propagation
BP)神经网络的金属结构弱磁检测缺陷定量分析方法。针对BP神经网络在参数调整时的效果欠佳、效率低等问题,采用基于Sine混沌映射的改进鲸鱼优化算法(Improved Whale Optimization Algorithm
IWOA)对BP神经网络参数调整方式进行优化,兼顾全局寻优的同时提高局部寻优的能力,进而将IWOA搜索到的最优参数赋值给BP神经网络,提高网络初始参数的质量。以人工矩形槽模拟裂纹,对矩形槽的长度、宽度、深度进行反演定量。结果表明,IWOA-BP神经网络预测的平均精度均在80%以上,深度、长度、宽度预测精度分别提高了106.72%、9.68%、6.86%。
Metal structures are widely used in industry. Metal structures in service are prone to crack defects under tensile and compressive fatigue load.In order to realize quantitative detection of metal structures’ crack defects
a quantitative analysis method of metal structures’ weak magnetic detection based on back propagation (BP) neural network was studied. In view of the poor effect and low efficiency of BP neural network in parameter adjustment
the improved whale optimization algorithm (IWOA) based on Sine chaotic mapping was adopted to optimize the BP neural network parameter adjustment mode
giving consideration to global optimization while improving the local optimization ability
and then the optimal parameters searched by IWOA were assigned to BP neural network
improving the quality of initial network parameters.The length
width and depth of the artificial rectangular slot were quantified by inversion. The results show that the average prediction accuracy of IWOA-BP neural network is above 80%
and the prediction accuracy of depth
length and width is improved respectively by 106.72%
9.68% and 6.86%.
郭萌梦 , 胡博 , 彭贤虎 , 等 . 基于Libsvm的304不锈钢人工缺陷弱磁信号反演研究 [J]. 机械强度 , 2021 , 43 ( 2 ): 293 - 299 .
GUO Mengmeng , HU Bo , PENG Xianhu , et al . Research on magnetic inversion of 304 stainless steel artificial defects weak magnetic signal based on Libsvm [J]. Journal of Mechanical Strength , 2021 , 43 ( 2 ): 293 - 299 . (In Chinese)
RAMUHALLI P , UDPA L , UDPA S S . Electromagnetic NDE signal inversion by function-approximation neural networks [J]. IEEE Transactions on Magnetics , 2002 , 38 ( 6 ): 3633 - 3642 .
吴春笃 , 李慧梅 , 王钟羡 . BP神经网络在弹塑性断裂分析中的应用 [J]. 机械强度 , 2010 , 32 ( 2 ): 338 - 341 .
WU Chundu , LI Huimei , WANG Zhongxian . Application of BP neural network for elasticity plasticity fracture analysis [J]. Journal of Mechanical Strength , 2010 , 32 ( 2 ): 338 - 341 . (In Chinese)
LIU S J , LI S L , JIANG M , et al . Quantitative identification of pipeline crack based on BP neural network [J]. Key Engineering Materials , 2017 , 737 : 477 - 480 .
梁远远 , 杨生胜 , 文轩 , 等 . 脉冲涡流无损检测中缺陷定量化技术研究 [J]. 仪器仪表学报 , 2018 , 39 ( 11 ): 70 - 78 .
LIANG Yuanyuan , YANG Shengsheng , WEN Xuan , et al . Res-earch on the quantification of defect in the nondestructive tesing of pulse eddy current [J]. Chinese Journal of Scientific Instrument , 2018 , 39 ( 11 ): 70 - 78 . (In Chinese)
ZHANG J W , PENG F C , CHEN J B . Quantitative detection of wire rope based on three-dimensional magnetic flux leakage color imaging technology [J]. IEEE Access , 2020 , 8 : 104165 - 104174 .
XIN J X , CHEN J Z , LI C Y , et al . Deformation characterization of oil and gas pipeline by ACM technique based on SSA-BP neural network model [J]. Measurement , 2022 , 189 : 110654 .
QIU Z C , ZHANG R L , ZHANG W M . Quantitative testing of micro-cracks by the MFL technique based on GA-BP neural network [J]. International Journal of Manufacturing Research , 2017 , 12 ( 2 ): 165 - 176 .
MIRJALILI S , LEWIS A . The whale optimization algorithm [J]. Advances in Engineering Software , 2016 , 95 : 51 - 67 .
汪恩良 , 田雨 , 刘兴超 , 等 . 基于WOA-BP神经网络的超低温冻土抗压强度预测模型研究 [J]. 力学学报 , 2022 , 54 ( 4 ): 1145 - 1153 .
WANG Enliang , TIAN Yu , LIU Xingchao , et al . Prediction model of compressive strength of ultra low temperature frozen soil based on WOA-BP neural network [J]. Chinese Journal of Theoretical and Applied Mechanics , 2022 , 54 ( 4 ): 1145 - 1153 . (In Chinese)
LIANG Z Z , HAN Q , ZHANG T , et al . Nonlinearity compensation of magneto-optic fiber current sensors based on WOA-BP neural network [J]. IEEE Sensors Journal , 2022 , 22 ( 20 ): 19378 - 19383 .
马创 , 周代棋 , 张业 . 基于改进鲸鱼算法的BP神经网络水资源需求预测方法 [J]. 计算机科学 , 2020 , 47 ( 增刊2 ): 486 - 490 .
MA Chuang , ZHOU Daiqi , ZHANG Ye . BP neural network water resource demand prediction method based on improved whale algorithm [J]. Computer Science , 2020 , 47 ( Suppl.2 ): 486 - 490 . (In Chinese)
肖荣鸽 , 靳帅帅 , 庄琦 , 等 . 基于WOA-BP算法的持液率预测模型研究 [J]. 化学工程 , 2022 , 50 ( 1 ): 67 - 73 .
XIAO Rongge , JIN Shuaishuai , ZHUANG Qi , et al . Prediction model of liquid holdup based on WOA-BP network [J]. Chemical Engineering(China) , 2022 , 50 ( 1 ): 67 - 73 . (In Chinese)
陈峥 , 李镇伍 , 申江卫 , 等 . 基于改进WOA优化BP神经网络的车用PMSM参数辨识 [J]. 电机与控制应用 , 2022 , 49 ( 5 ): 27 - 36 .
CHEN Zheng , LI Zhenwu , SHEN Jiangwei , et al . Vehicle PMSM parameter identification based on optimization of BP neural network by improved WOA [J]. Electric Machines & Control Application , 2022 , 49 ( 5 ): 27 - 36 . (In Chinese)
RUMELHART D E , HINTON G E , WILLIAMS R J . Learning representations by back-propagating errors [J]. Nature , 1986 , 323 : 533 - 536 .
胡建华 , 黄宇龙 , 张坚 , 等 . 基于麻雀搜索算法优化双隐含层BP 神经网络的张力减径钢管壁厚预测 [J]. 塑性工程学报 , 2022 , 29 ( 8 ): 145 - 151 .
HU Jianhua , HUANG Yulong , ZHANG Jian , et al . Wall thickness prediction of steel pipe during tension reduction based on double hidden layer BP neural network optimized by sparrow search algorithm [J]. Journal of Plasticity Engineering , 2022 , 29 ( 8 ): 145 - 151 . (In Chinese)
王康德 , 刘文泽 , 陈泽 , 等 . 基于改进WOA-BP神经网络的水电机组 ADC效能评估 [J]. 三峡大学学报(自然科学版) , 2022 , 44 ( 6 ): 95 - 100 .
WANG Kangde , LIU Wenze , CHEN Ze , et al . ADC efficiency evaluation of hydropower unit based on improved WOA-BP [J]. Journal of China Three Gorges University(Nature Sciences) , 2022 , 44 ( 6 ): 95 - 100 . (In Chinese)
李琼 , 李美琦 , 王睿 . 煤层气储层裂隙检测的WOA-BP算法及应用研究 [J]. 地球物理学报 , 2022 , 65 ( 2 ): 773 - 784 .
LI Qiong , LI Meiqi , WANG Rui . WOA-BP algorithm for crack detection in coalbed methane reservoirs and its application [J]. Chinese Journal of Geophysics , 2022 , 65 ( 2 ): 773 - 784 . (In Chinese)
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构