浏览全部资源
扫码关注微信
1.成都工业学院 智能制造学院,成都 610031
2.四川大学 机械工程学院,成都 610065
张慧云,女,1978年生,陕西渭南人,硕士,副教授;主要研究方向为机械设计与制造;E-mail:149449567@qq.com。
杨婷,女,1991年生,四川眉山人,硕士,讲师;主要研究方向为现代新型传动技术与机器人技术;E-mail:1058546061@qq.com。
收稿日期:2024-02-06,
修回日期:2024-05-05,
纸质出版日期:2025-03-15
移动端阅览
张慧云,左芳君,余熹,等. 基于加权子域自适应对抗网络的齿轮箱变工况故障诊断[J]. 机械强度,2025,47(3):96-103.
ZHANG Huiyun,ZUO Fangjun,YU Xi,et al.Fault diagnosis of gearbox under variable working condition based on weighted subdomain adaptive adversarial network[J]. Journal of Mechanical Strength,2025,47(3):96-103.
张慧云,左芳君,余熹,等. 基于加权子域自适应对抗网络的齿轮箱变工况故障诊断[J]. 机械强度,2025,47(3):96-103. DOI: 10.16579/j.issn.1001.9669.2025.03.012.
ZHANG Huiyun,ZUO Fangjun,YU Xi,et al.Fault diagnosis of gearbox under variable working condition based on weighted subdomain adaptive adversarial network[J]. Journal of Mechanical Strength,2025,47(3):96-103. DOI: 10.16579/j.issn.1001.9669.2025.03.012.
实际工程中齿轮箱受复杂多变的运行环境影响,导致单一振动信号难以准确有效地表征齿轮箱在不同工况下的故障信息。为此,提出了一种基于加权子域自适应对抗网络的齿轮箱变工况故障诊断方法。首先,采用多源异构信号融合策略,将振动信号时频图、电流信号格拉姆矩阵和红外热力图转换为多通道数据集,从不同视角描述齿轮箱运行状态;其次,构建嵌入高效通道注意力机制(Efficient Channel Attention
ECA)的自校正卷积神经网络(Self-calibrated Convolutions Network
SCNet)作为特征提取器,动态调整多源异构信号间相互作用和依赖关系,平衡源域和目标域的多源异构数据间尺度差异;再次,在特征提取器和域判别器进行对抗训练的同时,引入最大均值差异(Maximum Mean Discrepancy
MMD)和线性判别分析(Linear Discriminant Analysis
LDA)衡量当前跨域任务特征表示的域对齐程度及诊断任务决策边界,并构造动态平衡因子实时调整域对齐损失和类分辨性损失,有效地对齐源域和目标域每个类空间。最后,通过采集的齿轮箱变工况故障数据集进行验证。结果表明,所提方法在不同工况的诊断精度均达到95%以上,证明了所提方法的可行性和有效性。
In practical engineering
gearboxes are subject to complex and variable operating environments
which hinder the ability of a single vibration signal to accurately and effectively represent fault information under different working conditions. To address this issue
a gearbox fault diagnosis method for variable working conditions based on weighted subdomain adaptive adversarial networks was proposed. Initially
a multi-source heterogeneous signal fusion strategy was employed to transform vibration signal spectrograms
current signal Gramian matrices
and infrared thermograms into a multi-channel dataset
offering diverse perspectives on gearbox operational states. Subsequently
a self-calibrated convolutions network (SCNet) incorporating an efficient channel attention (ECA) mechanism acted as a feature extractor
dynamically adjusting the interactions and dependencies between multi-source heterogeneous signals to balance the scale differences between the source and target domain heterogeneous data. Concurrently
during adversarial training of the feature extractor and domain discriminator
maximum mean discrepancy (MMD) and linear discriminant analysis (LDA) were introduced to measure the domain alignment degree of the current cross-domain task feature representation and the diagnostic task decision boundary. A dynamic balancing factor was constructed to real-time adjust domain alignment loss and class discriminability loss
effectively aligning each class space between the source and target domains. Finally
validated by a collected gearbox fault dataset under variable operating conditions. The results show that the proposed method achieves diagnostic accuracy exceeding 95% across different conditions
demonstrating its feasibility and effectiveness.
李东东 , 蒋海涛 , 赵耀 , 等 . 极端条件下基于改进深度森林的行星齿轮箱故障诊断方法 [J]. 电力系统保护与控制 , 2023 , 51 ( 11 ): 39 - 50 .
LI Dongdong , JIANG Haitao , ZHAO Yao , et al . Fault diagnosis technology of a planetary gearbox based on an improved deep forest algorithm under extreme conditions [J]. Power System Protection and Control , 2023 , 51 ( 11 ): 39 - 50 . (In Chinese)
张荣涛 , 陈志高 , 李彬彬 , 等 . 基于深度卷积神经网络模型和XGBoost算法的齿轮箱故障诊断研究 [J]. 机械强度 , 2020 , 42 ( 5 ): 1059 - 1066 .
ZHANG Rongtao , CHEN Zhigao , LI Binbin , et al . Research on gear box fault diagnosis based on DCNN and XGBoost algorithm [J]. Journal of Mechanical Strength , 2020 , 42 ( 5 ): 1059 - 1066 . (In Chinese)
王辉 , 徐佳文 , 严如强 . 基于多尺度注意力深度强化学习网络的行星齿轮箱智能诊断方法 [J]. 机械工程学报 , 2022 , 58 ( 11 ): 133 - 142 .
WANG Hui , XU Jiawen , YAN Ruqiang . Multi‑scale attention based deep reinforcement learning for intelligent fault diagnosis of planetary gearbox [J]. Journal of Mechanical Engineering , 2022 , 58 ( 11 ): 133 - 142 . (In Chinese)
张韬 , 贾倩 , 辛月杰 . 基于无监督特征对齐的滚动轴承故障诊断 [J]. 机械强度 , 2022 , 44 ( 3 ): 547 - 553 .
ZHANG Tao , JIA Qian , XIN Yuejie . Fault diagnosis of rolling bearing based on unsupervised feature alignment [J]. Journal of Mechanical Strength , 2022 , 44 ( 3 ): 547 - 553 . (In Chinese)
雷春丽 , 夏奔锋 , 薛林林 , 等 . 小样本下自校正卷积神经网络的滚动轴承故障识别方法 [J]. 仪器仪表学报 , 2022 , 43 ( 9 ): 122 - 130 .
LEI Chunli , XIA Benfeng , XUE Linlin , et al . Fault identification for rolling bearing by self-calibrated convolutional neural network under small samples conditions [J]. Chinese Journal of Scientific Instrument , 2022 , 43 ( 9 ): 122 - 130 . (In Chinese)
DING Y F , JIA M P , ZHUANG J C , et al . Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions [J]. Reliability Engineering & System Safety , 2023 , 230 : 108890 .
ZHANG S Y , SU L , GU J F , et al . Rotating machinery fault detection and diagnosis based on deep domain adaptation:a survey [J]. Chinese Journal of Aeronautics , 2023 , 36 ( 1 ): 45 - 74 .
王琦 , 邓林峰 , 赵荣珍 . 基于一维CNN迁移学习的滚动轴承故障诊断 [J]. 振动.测试与诊断 , 2023 , 43 ( 1 ): 24 - 30 .
WANG Qi , DENG Linfeng , ZHAO Rongzhen . Fault diagnosis of rolling bearings based on one-dimensional convolutional neural network with transfer learning [J]. Journal of Vibration ,Measurement & Diagnosis, 2023 , 43 ( 1 ): 24 - 30 . (In Chinese)
朱朋 , 董绍江 , 李洋 , 等 . 基于残差注意力机制和子领域自适应的时变转速下滚动轴承故障诊断 [J]. 振动与冲击 , 2022 , 41 ( 22 ): 293 - 300 .
ZHU Peng , DONG Shaojiang , LI Yang , et al . Fault diagnosis of rolling bearings under time-varying speed based on the residual attention mechanism and subdomain adaptation [J]. Journal of Vibration and Shock , 2022 , 41 ( 22 ): 293 - 300 . (In Chinese)
沈飞 , 陈超 , 徐佳文 , 等 . 数据领域选择与空间迁移在齿轮箱故障诊断中的应用 [J]. 振动工程学报 , 2021 , 34 ( 2 ): 389 - 401 .
SHEN Fei , CHEN Chao , XU Jiawen , et al . Application of data domain selection and space transfer on gearbox fault diagnosis [J]. Journal of Vibration Engineering , 2021 , 34 ( 2 ): 389 - 401 . (In Chinese)
陈仁祥 , 杨星 , 胡小林 , 等 . 深度置信网络迁移学习的行星齿轮箱故障诊断方法 [J]. 振动与冲击 , 2021 , 40 ( 1 ): 127 - 133 .
CHEN Renxiang , YANG Xing , HU Xiaolin , et al . Planetary gearbox fault diagnosis method based on deep belief network transfer learning [J]. Journal of Vibration and Shock , 2021 , 40 ( 1 ): 127 - 133 . (In Chinese)
AN Y Y , ZHANG K , CHAI Y , et al . Domain adaptation network base on contrastive learning for bearings fault diagnosis under variable working conditions [J]. Expert Systems with Applications , 2023 , 212 : 118802 .
朱丹宸 , 张永祥 , 潘洋洋 , 等 . 基于多传感器信号和卷积神经网络的滚动轴承故障诊断 [J]. 振动与冲击 , 2020 , 39 ( 4 ): 172 - 178 .
ZHU Danchen , ZHANG Yongxiang , PAN Yangyang , et al . Fault diagnosis for rolling element bearings based on multi-sensor signals and CNN [J]. Journal of Vibration and Shock , 2020 , 39 ( 4 ): 172 - 178 . (In Chinese)
侯召国 , 王华伟 , 熊明兰 , 等 . 基于迁移学习与加权多通道融合的齿轮箱故障诊断 [J]. 振动与冲击 , 2023 , 42 ( 9 ): 236 - 246 .
HOU Zhaoguo , WANG Huawei , XIONG Minglan , et al . Gearbox fault diagnosis based on transfer learning and weighted multi-channel fusion [J]. Journal of Vibration and Shock , 2023 , 42 ( 9 ): 236 - 246 . (In Chinese)
MAO G , ZHANG Z Z , QIAO B , et al . Fusion domain-adaptation CNN driven by images and vibration signals for fault diagnosis of gearbox cross-working conditions [J]. Entropy , 2022 , 24 ( 1 ): 119 .
ZHANG Y C , FENG K , MA H , et al . MMFNet:multisensor data and multiscale feature fusion model for intelligent cross-domain machinery fault diagnosis [J]. IEEE Transactions on Instrumentation and Measurement , 2022 , 71 : 3526311 .
LIU J J , HOU Q B , CHENG M M , et al . Improving convolutional networks with self-calibrated convolutions [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . New York : IEEE , 2020 : 10093 - 10102 .
WANG Q L , WU B G , ZHU P F , et al . ECA-Net:efficient channel attention for deep convolutional neural networks [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . New York : IEEE , 2020 : 11531 - 11539 .
XIAO N , ZHANG L . Dynamic weighted learning for unsupervised domain adaptation [C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) . New York : IEEE , 2021 : 15237 - 15246 .
LONG M S , CAO Y , WANG J M , et al . Learning transferable features with deep adaptation networks [C]// International Conference on Machine Learning . Lille : [s.n.] , 2015 : 97 - 105 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构