浏览全部资源
扫码关注微信
1.中海油能源发展装备技术有限公司 工业防护工程中心,天津 300457
2.天津大学 化工学院,天津 300350
张颛利,男,1978年生,天津人,硕士,经济师;主要研究方向为海洋石油设备设施腐蚀防护与腐蚀治理;E-mail:Zhangzh12@cnooc.com.cn。
孙兴悦(通信作者),男,1995年生,河南洛阳人,博士,助理研究员;主要研究方向为基于数据驱动的材料多轴疲劳寿命预测;E-mail:xysun7230@tju.edu.cn。
收稿日期:2024-04-23,
修回日期:2024-06-20,
纸质出版日期:2025-02-15
移动端阅览
张颛利, 孙兴悦, 陈旭. 基于物理信息神经网络的金属多轴疲劳寿命预测进展[J]. 机械强度,2025,47(2):44-52.
ZHANG Zhuanli,SUN Xingyue,CHEN Xu. Development in metal multiaxial fatigue life prediction based on physics-informed neural networks[J]. Journal of Mechanical Strength,2025,47(2):44-52.
张颛利, 孙兴悦, 陈旭. 基于物理信息神经网络的金属多轴疲劳寿命预测进展[J]. 机械强度,2025,47(2):44-52. DOI: 10.16579/j.issn.1001.9669.2025.02.006.
ZHANG Zhuanli,SUN Xingyue,CHEN Xu. Development in metal multiaxial fatigue life prediction based on physics-informed neural networks[J]. Journal of Mechanical Strength,2025,47(2):44-52. DOI: 10.16579/j.issn.1001.9669.2025.02.006.
材料的多轴疲劳寿命预测研究是保证部件结构完整性的关键要素之一。近年来机器学习尤其是神经网络在疲劳寿命预测领域得到了广泛应用。然而,疲劳数据的不足阻碍了神经网络在疲劳预测中的进一步应用。为了解决这一问题,考虑疲劳先验物理知识的物理信息神经网络逐渐受到关注。首先,概述了机器学习算法的分类及神经网络模型在多轴疲劳寿命预测中的应用。随后,重点对基于物理信息神经网络的材料疲劳寿命预测研究进行了深入探讨。最后,从基于物理信息的输入特征、基于物理信息的损失函数构建和基于物理信息的网络框架开发等3个方面对物理信息神经网络模型的发展进行介绍。相关研究表明,在材料多轴疲劳寿命预测过程中,物理信息神经网络可以表现出更好的物理一致性和预测性能。
The research on multiaxial fatigue life prediction of materials is one of the critical elements in ensuring the structural integrity of components. In recent years
machine learning
especially neural networks
has been widely applied in fatigue life prediction. However
the scarcity of fatigue data has limited the further application of neural networks in fatigue prediction. To address this issue
physics-informed neural networks that consider prior physical knowledge of fatigue have gradually gained attention. Firstly
provided an overview of the classification of machine learning algorithms and the application of neural-network models in multiaxial fatigue life prediction. Then
it focused on a deep exploration of the research on material fatigue life prediction based on physics-informed neural networks. Finally
the development of physics-informed neural networks was introduced from three aspects: physics-informed input features
the construction of physics-informed loss functions
and physics-informed network frameworks. Relevant studies show that physics-informed neural networks can exhibit better physical consistency and prediction performance in the process of multiaxial fatigue life prediction of materials.
LI Y , LIU J , HUANG W , et al . Microstructure related analysis of tensile and fatigue properties for sand casting aluminum alloy cylinder head [J]. Engineering Failure Analysis , 2022 , 136 : 106210 .
WANG H , LI B , GONG J , et al . Machine learning-based fatigue life prediction of metal materials:perspectives of physics-informed and data-driven hybrid methods [J]. Engineering Fracture Mechanics , 2023 , 284 : 109242 .
曹孟杰 . 基于机器学习的304不锈钢低周疲劳寿命预测研究 [D]. 兰州 : 兰州理工大学 , 2024 : 3 - 7 .
CAO Mengjie . Prediction study of 304 stainless steel low-cycle fatigue life based on machine learning [D]. Lanzhou : Lanzhou University of Technology , 2024 : 3 - 7 . (In Chinese)
AGRAWAL A , CHOUDHARY A . Perspective:materials informatics and big data:realization of the “fourth paradigm” of science in materials science [J]. APL Materials , 2016 , 4 ( 5 ): 053208 .
KALAYCI C B , KARAGOZ S , KARAKAS Ö . Soft computing methods for fatigue life estimation:a review of the current state and future trends [J]. Fatigue and Fracture of Engineering Materials and Structures , 2020 , 43 ( 12 ): 2763 - 2785 .
张明义 , 袁帅 , 钟敏 , 等 . 金属材料和结构的疲劳寿命预测概率模型及应用研究进展 [J]. 材料导报 , 2018 , 32 ( 5 ): 808 - 814 .
ZHANG Mingyi , YUAN Shuai , ZHONG Min , et al . A review on development and application of probabilistic fatigue life prediction models for metal materials and components [J]. Materials Reports , 2018 , 32 ( 5 ): 808 - 814 . (In Chinese)
POST N , CASE S , LESKO J . Modeling the variable amplitude fatigue of composite materials:a review and evaluation of the state of the art for spectrum loading [J]. International Journal of Fatigue , 2008 , 30 ( 12 ): 2064 - 2086 .
CHEN J , LIU Y . Fatigue modeling using neural networks:a comprehensive review [J]. Fatigue and Fracture of Engineering Materials and Structures , 2022 , 45 ( 4 ): 945 - 979 .
FU Y , DOWNEY A R J , YUAN L , et al . Machine learning algorithms for defect detection in metal laser-based additive manufacturing:a review [J]. Journal of Manufacturing Processes , 2022 , 75 : 693 - 710 .
WANG X , LIU J . Intelligent prediction of fatigue life of natural rubber considering strain ratio effect [J]. Fatigue and Fracture of Engineering Materials and Structures , 2023 , 46 ( 5 ): 1687 - 1703 .
李有根 , 马文生 , 李方忠 , 等 . SVM方法在某多级离心泵故障诊断中的应用 [J]. 机械强度 , 2024 , 46 ( 2 ): 272 - 280 .
LI Yougen , MA Wensheng , LI Fangzhong , et al . Application of SVM method in fault diagnosis of a multi-stage centrifugal pump [J]. Journal of Mechanical Strength , 2024 , 46 ( 2 ): 272 - 280 . (In Chinese)
DONG Q , YU Y , XU G . Fatigue residual life estimation of jib structure based on improved V-SVR algorithm obtaining equivalent load spectrum [J]. Fatigue and Fracture of Engineering Materials and Structures , 2020 , 43 ( 6 ): 1083 - 1099 .
DANG L , HE X , TANG D , et al . A fatigue life prediction approach for laser-directed energy deposition titanium alloys by using support vector regression based on pore-induced failures [J]. International Journal of Fatigue , 2022 , 159 : 106748 .
XU L , ZHANG R , HAO M , et al . A data-driven low-cycle fatigue life prediction model for nickel-based superalloys [J]. Computational Materials Science , 2023 , 229 : 112434 .
DAEIL K , AZARIAN M H , PECHT M . Remaining-life prediction of solder joints using RF impedance analysis and Gaussian process regression [J]. IEEE Transactions on Components , Packaging and Manufacturing Technology , 2015 , 5 ( 11 ): 1602 - 1609 .
FENG C , SU M , XU L , et al . Estimation of fatigue life of welded structures incorporating importance analysis of influence factors:a data-driven approach [J]. Engineering Fracture Mechanics , 2023 , 281 : 109103 .
XIAO L , WANG G , LONG W , et al . Fatigue life prediction of the FCC-based multi-principal element alloys via domain knowledge-based machine learning [J]. Engineering Fracture Mechanics , 2024 , 296 : 109860 .
GAO J J , WANG J , XU Z L , et al . Multiaxial fatigue prediction and uncertainty quantification based on back propagation neural network and Gaussian process regression [J]. International Journal of Fatigue , 2023 , 168 : 107361 .
周书蔚 , 杨冰 , 王超 , 等 . 机器学习法预测不同应力比6005A-T6铝合金疲劳裂纹扩展速率 [J]. 中国有色金属学报 , 2023 , 33 ( 8 ): 2416 - 2427 .
ZHOU Shuwei , YANG Bing , WANG Chao , et al . Fatigue crack growth rate estimation of 6005A-T6 aluminum alloys with different stress ratios using machine learning methods [J]. The Chinese Journal of Nonferrous Metals , 2023 , 33 ( 8 ): 2416 - 2427 . (In Chinese)
WUEST T , WEIMER D , IRGENS C , et al . Machine learning in manufacturing:advantages,challenges,and applications [J] . Production & Manufacturing Research , 2016 , 4 ( 1 ): 23 - 45 .
PUTRA T E , ABDULLAH S , SCHRAMM D , et al . Wavelet-based feature extraction algorithm for fatigue strain data associated with the k-means clustering technique [C]. 11th International Fatigue Congress , Melbourne,Austrilia : 2014 : 1717 .
CAI W , ZHAO J , ZHU M . A real time methodology of cluster-system theory-based reliability estimation using k-means clustering [J]. Reliability Engineering and System Safety , 2020 , 202 : 107045 .
PERRIN T V E , ROUSTANT O , ROHMER J , et al . Functional principal component analysis for global sensitivity analysis of model with spatial output [J]. Reliability Engineering & System Safety , 2021 , 211 : 107522 .
SUN X , ZHOU K , SHI S , et al . A new cyclical generative adversarial network based data augmentation method for multiaxial fatigue life prediction [J]. International Journal of Fatigue , 2022 , 162 : 106996 .
NING L , CAI Z , LIU Y , et al . Conditional generative adversarial network driven approach for direct prediction of thermal stress based on two-phase material SEM images [J]. Ceramics International , 2021 , 47 ( 24 ): 34115 - 34126 .
ZHANG S , HUANG K , ZHU J , et al . Manifold adversarial training for supervised and semi-supervised learning [J]. Neural Networks , 2021 , 140 : 282 - 293 .
LI Y , WANG Y , YU D J , et al . ASCENT:active supervision for semi-supervised learning [J]. IEEE Transactions on Knowledge and Data Engineering , 2020 , 32 ( 5 ): 868 - 882 .
FAN C , ZENG L , SUN Y , et al . Finding key players in complex networks through deep reinforcement learning [J]. Nature Machine Intelligence , 2020 , 2 ( 6 ): 317 - 324 .
娄路亮 , 李付国 . 锻造模具的随机疲劳损伤分析 [J]. 机械强度 , 2002 , 24 ( 1 ): 104 - 108 .
LOU Luliang , LI Fuguo . Stochastic fatigue damage analysis of the forging die [J]. Journal of Mechanical Strength , 2002 , 24 ( 1 ): 104 - 108 . (In Chinese)
左旸 , 杨蓉萍 , 马浩钦 , 等 . 基于径向基神经网络的桥式起重机剩余寿命评估 [J]. 机械强度 , 2021 , 43 ( 6 ): 1450 - 1455 .
ZUO Yang , YANG Rongping , MA Haoqin , et al . Evaluation for remaining life of bridge crane based on radial basis neural network [J]. Journal of Mechanical Strength , 2021 , 43 ( 6 ): 1450 - 1455 . (In Chinese)
SRINIVASAN V . Low cycle fatigue and creep-fatigue interaction behavior of 316L(N) stainless steel and life prediction by artificial neural network approach [J]. International Journal of Fatigue , 2003 , 25 ( 12 ): 1327 - 1338 .
ZHAN Z , LI H . Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L [J]. International Journal of Fatigue , 2021 , 142 : 105941 .
BRITO OLIVEIRA G A , FREIRE JÚNIOR R C S , CONTE MENDES VELOSO L A , et al . A hybrid ANN-multiaxial fatigue nonlocal model to estimate fretting fatigue life for aeronautical Al alloys [J]. International Journal of Fatigue , 2022 , 162 : 107011 .
YANG J , KANG G , LIU Y , et al . Life prediction for rate-dependent low-cycle fatigue of PA6 polymer considering ratchetting:semi-empirical model and neural network based approach [J]. International Journal of Fatigue , 2020 , 136 : 105619 .
ZHANG X , GONG J , XUAN F . A deep learning based life prediction method for components under creep,fatigue and creep-fatigue conditions [J]. International Journal of Fatigue , 2021 , 148 : 106236 .
SUN X , ZHOU T , SONG K , et al . An image recognition based multiaxial low-cycle fatigue life prediction method with CNN model [J]. International Journal of Fatigue , 2023 , 167 : 107324 .
ZHOU T , SUN X , YU Z , et al . A generalization ability-enhanced image recognition based multiaxial fatigue life prediction method for complex loading conditions [J]. Engineering Fracture Mechanics , 2024 , 295 : 109802 .
TSOPANIDIS S , MORENO R H , OSOVSKI S . Toward quantitative fractography using convolutional neural networks [J]. Engineering Fracture Mechanics , 2020 , 231 : 106992 .
车畅畅 , 王华伟 , 倪晓梅 , 等 . 基于1D-CNN和Bi-LSTM的航空发动机剩余寿命预测 [J]. 机械工程学报 , 2021 , 57 ( 14 ): 304 - 312 .
CHE Changchang , WANG Huawei , NI Xiaomei , et al . Residual life prediction of aeroengine based on 1D-CNN and Bi-LSTM [J]. Journal of Mechanical Engineering , 2021 , 57 ( 14 ): 304 - 312 . (In Chinese)
BARTOŠÁK M . Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading [J]. International Journal of Fatigue , 2022 , 163 : 107067 .
YANG J , KANG G , LIU Y , et al . A novel method of multiaxial fatigue life prediction based on deep learning [J]. International Journal of Fatigue , 2021 , 151 : 106356 .
WEI X , ZHANG C , HAN S , et al . High cycle fatigue S-N curve prediction of steels based on transfer learning guided long short term memory network [J]. International Journal of Fatigue , 2022 , 163 : 107050 .
PENG J , YAMAMOTO Y , HAWK J A , et al . Coupling physics in machine learning to predict properties of high-temperatures alloys [J]. npj Computational Materials , 2020 , 6 ( 1 ): 141 .
ZHOU K , SUN X , SHI S , et al . Machine learning-based genetic feature identification and fatigue life prediction [J]. Fatigue and Fracture of Engineering Materials and Structures , 2021 , 44 ( 9 ): 2524 - 2537 .
ZHOU T , SUN X , CHEN X . A multiaxial low-cycle fatigue prediction method under irregular loading by ANN model with knowledge-based features [J]. International Journal of Fatigue , 2023 , 176 : 107868 .
郑战光 , 张剑 , 孙腾 , 等 . 基于多轴载荷相位差的神经网络预测钛合金疲劳寿命 [J]. 中国有色金属学报 , 2023 , 33 ( 3 ): 781 - 791 .
ZHENG Zhanguang , ZHANG Jian , SUN Teng , et al . Multi-axial fatigue life prediction of titanium alloy based on neural network of load phase difference [J]. The Chinese Journal of Nonferrous Metals , 2023 , 33 ( 3 ): 781 - 791 . (In Chinese)
HE G , ZHAO Y , YAN C . Multiaxial fatigue life prediction using physics-informed neural networks with sensitive features [J]. Engineering Fracture Mechanics , 2023 , 289 : 109456 .
HE G , ZHAO Y , YAN C . Uncertainty quantification in multiaxial fatigue life prediction using Bayesian neural networks [J]. Engineering Fracture Mechanics , 2024 , 298 : 109961 .
ZHENG Z , LI X , SUN T , et al . Multiaxial fatigue life prediction of metals considering loading paths by image recognition and machine learning [J]. Engineering Failure Analysis , 2023 , 143 : 106851 .
LIAN Z , LI M , LU W . Fatigue life prediction of aluminum alloy via knowledge-based machine learning [J]. International Journal of Fatigue , 2022 , 157 : 106716 .
HAO W Q , TAN L , YANG X G , et al . A physics-informed machine learning approach for notch fatigue evaluation of alloys used in aerospace [J]. International Journal of Fatigue , 2023 , 170 : 107536 .
ZHANG X , GONG J , XUAN F . A physics-informed neural network for creep-fatigue life prediction of components at elevated temperatures [J]. Engineering Fracture Mechanics , 2021 , 258 : 108130 .
WANG H , LI B , XUAN F . Fatigue-life prediction of additively manufactured metals by continuous damage mechanics (CDM)informed machine learning with sensitive features [J]. International Journal of Fatigue , 2022 , 164 : 107147 .
WANG L , ZHU S , LUO C , et al . Physics-guided machine learning frameworks for fatigue life prediction of AM materials [J]. International Journal of Fatigue , 2023 , 172 : 107658 .
GAN L , WU H , ZHONG Z . On the use of data-driven machine learning for remaining life estimation of metallic materials based on Ye-Wang damage theory [J]. International Journal of Fatigue , 2022 , 156 : 106666 .
KARNIADAKIS G E , KEVREKIDIS I G , LU L , et al . Physics-informed machine learning [J]. Nature Reviews Physics , 2021 , 3 ( 6 ): 422 - 440 .
NASCIMENTO R G , FRICKE K , VIANA F A . A tutorial on solving ordinary differential equations using Python and hybrid physics-informed neural network [J]. Engineering Applications of Artificial Intelligence , 2020 , 96 : 103996 .
HALAMKA J , BARTOŠÁK M , ŠPANIEL M . Using hybrid physics-informed neural networks to predict lifetime under multiaxial fatigue loading [J]. Engineering Fracture Mechanics , 2023 , 289 : 109351 .
ZHOU T , JIANG S , HAN T , et al . A physically consistent framework for fatigue life prediction using probabilistic physics-informed neural network [J]. International Journal of Fatigue , 2023 , 166 : 107234 .
HE G , ZHAO Y , YAN C . MFLP-PINN:a physics-informed neural network for multiaxial fatigue life prediction [J]. European Journal of Mechanics-A/Solids , 2023 , 98 : 104889 .
HE G , ZHAO Y , YAN C . A physics-informed generative adversarial network framework for multiaxial fatigue life prediction [J]. Fatigue and Fracture of Engineering Materials and Structures , 2023 , 46 ( 10 ): 4036 - 4052 .
ZHOU T , SUN X , CHEN X . A physics-guided modelling method of artificial neural network for multiaxial fatigue life prediction under irregular loading [J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences , 2023 , 381 ( 2260 ): 20220392 .
YANG J , KANG G , KAN Q . Rate-dependent multiaxial life prediction for polyamide-6 considering ratchetting:semi-empirical and physics-informed machine learning models [J]. International Journal of Fatigue , 2022 , 163 : 107086 .
YANG J , KANG G , KAN Q . A novel deep learning approach of multiaxial fatigue life-prediction with a self-attention mechanism characterizing the effects of loading history and varying temperature [J]. International Journal of Fatigue , 2022 , 162 : 106851 .
CHEN D , LI Y , LIU K , et al . A physics-informed neural network approach to fatigue life prediction using small quantity of samples [J]. International Journal of Fatigue , 2023 , 166 : 107270 .
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构