浏览全部资源
扫码关注微信
1.中国矿业大学 机电工程学院,徐州 221116
2.江苏省矿山智能采掘装备协同创新中心,徐州 221116
3.智能采矿装备技术全国重点实验室,徐州 221116
王瑶,女,1999年生,山西晋城人,硕士研究生;主要研究方向为传感器优化布置;E-mail:wy131523923@sina.com。
纸质出版日期:2025-01-15,
收稿日期:2024-05-13,
修回日期:2024-06-11,
移动端阅览
王瑶, 杨善国, 吴明珂, 等. 基于煤矸振动特性的放顶煤支架传感器优化布置策略研究[J]. 机械强度, 2025,47(1):68-75.
WANG YAO, YANG SHANGUO, WU MINGKE, et al. Research on optimal arrangement strategy of top coal caving support sensors based on vibration characteristics of coal and gangue. [J]. Journal of mechanical strength, 2025, 47(1): 68-75.
王瑶, 杨善国, 吴明珂, 等. 基于煤矸振动特性的放顶煤支架传感器优化布置策略研究[J]. 机械强度, 2025,47(1):68-75. DOI: 10.16579/j.issn.1001.9669.2025.01.008.
WANG YAO, YANG SHANGUO, WU MINGKE, et al. Research on optimal arrangement strategy of top coal caving support sensors based on vibration characteristics of coal and gangue. [J]. Journal of mechanical strength, 2025, 47(1): 68-75. DOI: 10.16579/j.issn.1001.9669.2025.01.008.
针对放顶煤煤矸智能识别研究,为提供完整且有效的煤矸振动信号采集方案,提出了一种基于煤矸振动特性的放顶煤液压支架尾梁传感器优化布置策略。首先,对尾梁模型进行模态分析,提取振型矩阵,利用有效独立法初选测点;其次,获取尾梁试验台相应初选测点的落煤和落矸振动信号,进行特征提取;然后,对所提取特征进行
t
分布式随机邻域嵌入(
t
-distributed Stochastic Neighbor Embedding,
t
-SNE)降维可视化,筛选出5个对落煤和落矸信号区分敏感的特征,并以此作为目标特征;最后,经核密度估计法估算目标特征的概率密度函数,利用K-L(Kullback-Leibler)散度评估各测点组合信号与完整信号的近似性和煤矸特征的差异性,构建煤矸振动信号评价指标,结合Fisher信息矩阵准则,形成综合评价指标,确定尾梁的传感器布置最优方案。结果表明,该方法在满足模态可观测性的基础上不仅减少了传感器数量,还使得所测振动信号具有更好的煤矸差异性和信息完整性。
Aiming at the research on intelligent identification of caving coal and gangue
in order to provide a complete and effective vibration signal acquisition scheme of coal and gangue
an optimal layout strategy of tail beam sensors of caving coal hydraulic supports based on vibration characteristics of coal and gangue was proposed. Firstly
the modal analysis of the tail beam model was carried out
extracting the vibration mode matrix, and the effective independent method was used to select the measuring points. Secondly
the vibration signals of coal falling and gangue falling at the corresponding primary measuring points from the tail beam test bench were obtained
and the feature extraction was carried out. Thirdly
the extracted features were visualized by
t
-distributed stochastic neighbor embedding (
t
-SNE) dimensionality reduction
and five features which were sensitive to the distinction between coal and gangue signals were selected as target features. Finally
the probability density functions of target features were estimated by the kernel density estimation method. The K-L(K
ullback-Leibler) divergence was used to evaluate the approximation between combined signal of each measuring point and the complete signal and the difference between characteristics of coal and gangue. The evaluation indexes of coal and gangue vibration signals were constructed. Combined with Fisher information matrix criterion
a comprehensive evaluation index was formed to determine the optimal scheme of tail beam sensor arrangement. The results show that the sensor arrangement scheme determined by this method not only reduces the number of sensors on the basis of satisfying modal observability
but also makes the measured vibration signals have better coal gangue difference and information integrity.
放顶煤振动信号传感器优化布置液压支架尾梁有效独立法K-L散度
Top coal cavingVibration signalOptimal sensor placementHydraulic support tail beamEffective independence methodK-L divergence
王家臣,仲淑.我国厚煤层开采技术现状及需要解决的关键问题[J].中国科技论文在线,2008,3(11):829-834.
WANG Jiachen,ZHONG Shu.The present status and the key issues to be resolved of thick seam mining technique in China[J].Sciencepaper Online,2008,3(11):829-834.(In Chinese)
谢和平,王金华,王国法,等.煤炭革命新理念与煤炭科技发展构想[J].煤炭学报,2018,43(5):1187-1197.
XIE Heping,WANG Jinhua,WANG Guofa,et al.New ideas of coal revolution and layout of coal science and technology development[J].Journal of China Coal Society,2018,43(5):1187-1197.(In Chinese)
WANG J C,YANG S L,LI Y,et al.Caving mechanisms of loose top-coal in longwall top-coal caving mining method[J].International Journal of Rock Mechanics and Mining Sciences,2014,71:160-170.
ZHANG N,LIU C.Radiation characteristics of natural gamma-ray from coal and gangue for recognition in top coal caving[J].Scientific Reports,2018,8(1):190.
WANG B P,WANG Z C,LI Y X.Application of wavelet packet energy spectrum in coal-rock interface recognition[J].Key Engineering Materials,2011,474/475/476:1103-1106.
王保平.放顶煤过程中煤矸界面自动识别研究[D].济南:山东大学,2012:54-55.
WANG Baoping.Study on automatic identification of coal gangue interface in top coal caving process[D].Jinan:Shandong University,2012:54-55.(In Chinese)
刘伟,华臻,王汝琳.基于Hilbert谱信息熵的煤矸放落振动特征分析[J].中国安全科学学报,2011,21(4):32-37.
LIU Wei,HUA Zhen,WANG Rulin.Vibrational feature analysis for coal gangue caving based on information entropy of Hilbert spectrum[J].China Safety Science Journal,2011,21(4):32-37.(In Chinese)
刘伟.综放工作面煤矸界面识别理论与方法研究[D].北京:中国矿业大学(北京),2011:71-91.
LIU Wei.Study on theory and method of coal gangue interface identification in fully mechanized mining face[D].Beijing:China University of Mining & Technology,Beijing,2011:71-91.(In Chinese)
LIU W.Application of Hilbert-Huang transform to vibration signal analysis of coal and gangue[J].Applied Mechanics and Materials,2010,40/41:995-999.
薛光辉,赵新赢,柳二猛,等.基于振动信号时域特征的综放工作面煤岩识别[J].煤炭科学技术,2015,43(12):92-97.
XUE Guanghui,ZHAO Xinying,LIU Ermeng,et al.Time-domain characteristic extraction of coal and rock vibration signal in fully-mechanized top coal caving face[J].Coal Science and Technology,2015,43(12):92-97.(In Chinese)
马英.基于尾梁振动信号采集的煤矸识别智能放煤方法研究[J].煤矿开采,2016,21(4):40-42.
MA Ying.Intelligent coal caving with gangue identification based on tail beam vibration signal collection[J].Coal Mining Technology,2016,21(4):40-42.(In Chinese)
ZHANG G X,WANG Z C,ZHAO L,et al.Coal-rock recognition in top coal caving using bimodal deep learning and Hilbert-Huang transform[J].Shock and Vibration,2017,2017:3809525.
窦希杰.基于振动特征辨识的煤矸识别方法研究[D].徐州:中国矿业大学,2021:23-50.
DOU Xijie.Research on identification method of coal gangue based on vibration characteristics identification[D].Xuzhou:China University of Mining and Technology,2021:23-50.(In Chinese)
彭彬森,夏虹,王志超,等.深度神经网络在滚动轴承故障诊断中的应用[J].哈尔滨工业大学学报,2021,53(6):155-162.
PENG Binsen,XIA Hong,WANG Zhichao,et al.Rolling bearing fault diagnosisusing deep neural network[J].Journal of Harbin Institute of Technology,2021,53(6):155-162.(In Chinese)
李松柏,康子剑,陶洁.基于信息融合及堆栈降噪自编码的齿轮故障诊断[J].振动与冲击,2019,38(5):216-221.
LI Songbai,KANG Zijian,TAO Jie.Gear fault diagnosis based on information fusion and stacked de-noising auto-encoder[J].Journal of Vibration and Shock,2019,38(5):216-221.(In Chinese)
张杰.基于轴箱加速度的轨道高低不平顺检测[D].西安:西安理工大学,2023:1-2.
ZHANG Jie.Track irregularity detection based on axle box acceleration[D].Xi’an:Xi’an University of Technology,2023:1-2.(In Chinese)
吴子燕,简晓红,张彬,等.振动测试中多目标传感器优化配置研究[J].机械强度,2008,30(6):888-892.
WU Ziyan,JIAN Xiaohong,ZHANG Bin,et al.Multi-objective optimal sensor placement methodology for vibration test[J].Journal of Mechanical Strength,2008,30(6):888-892.(In Chinese)
杨海峰,闫云聚,吴子燕.基于Timoshenko梁理论的回传射线矩阵法在传感器优化布置中的应用研究[J].机械强度,2011,33(6):827-832.
YANG Haifeng,YAN Yunju,WU Ziyan.Research on optimal sensor placement with Timoshenko’s beam equation and reverberation matrix[J].Journal of Mechanical Strength,2011,33(6):827-832.(In Chinese)
KAMMER D C.Sensor placement for on-orbit modal identification and correlation of large space structures[J].Journal of Guidance,Control,and Dynamics,1991,14(2):251-259.
UDWADIA F E.Methodology for optimum sensor locations for parameter identification in dynamic systems[J].Journal of Engineering Mechanics,1994,120(2):368-390.
崔飞,袁万城,史家均.传感器优化布设在桥梁健康监测中的应用[J].同济大学学报(自然科学版),1999,27(1):15.
CUI Fei,YUAN Wancheng,SHI Jiajun.Application of optimal sensor layout in bridge health monitoring[J].Journal of Tongji University,1999,27(1):15.(In Chinese)
詹杰子,余岭.传感器优化布置的有效独立-改进模态应变能方法[J].振动与冲击,2017,36(1):82-87.
ZHAN Jiezi,YU Ling.An effective independence-improved modal strain energy method for optimal sensor placement[J].Journal of Vibration and Shock,2017,36(1):82-87.(In Chinese)
张建伟,刘轩然,赵瑜,等.基于有效独立-总位移法的水工结构振测传感器优化布置[J].振动与冲击,2016,35(8):148-153.
ZHANG Jianwei,LIU Xuanran,ZHAO Yu,et al.Optimal sensor placement for hydraulic structures based on effective independence-total displacement method[J].Journal of Vibration and Shock,2016,35(8):148-153.(In Chinese)
刘臻.基于故障可诊断性和VMD的齿轮箱故障诊断方法研究[D].兰州:兰州交通大学,2020:17-50.
LIU Zhen.Research on fault diagnosis method of gearbox based on fault diagnosability and VMD[D].Lanzhou:Lanzhou Jiaotong University,2020:17-50.(In Chinese)
彭珍瑞,刘 臻.基于故障可诊断性的齿轮箱传感器优化布置[J].振动与冲击,2021,40(4):155-163.
PENG Zhenrui,LIU Zhen.Optimal sensor placement of a gear box based on fault diagnosability[J].Journal of Vibration and Shock,2021,40(4):155-163.(In Chinese)
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构