浏览全部资源
扫码关注微信
新疆大学 机械工程学院,乌鲁木齐 830017
任泰珠,女,2000年生,陕西渭南人,硕士研究生;主要研究方向为图像处理和故障识别;E-mail:lolly0312@163.com。
纸质出版日期:2025-01-15,
收稿日期:2023-06-03,
修回日期:2023-07-07,
移动端阅览
任泰珠, 樊军, 蒋夏新. 基于抽油机工况的特征提取与建立和全域故障识别[J]. 机械强度, 2025,47(1):12-19.
REN TAIZHU, FAN JUN, JIANG XIAXIN. FEATURE EXTRACTION AND ESTABLISHMENT BASED ON PUMPING UNIT WORKING CONDITIONS AND GLOBAL FAULT IDENTIFICATION. [J]. Journal of mechanical strength, 2025, 47(1): 12-19.
任泰珠, 樊军, 蒋夏新. 基于抽油机工况的特征提取与建立和全域故障识别[J]. 机械强度, 2025,47(1):12-19. DOI: 10.16579/j.issn.1001.9669.2025.01.002.
REN TAIZHU, FAN JUN, JIANG XIAXIN. FEATURE EXTRACTION AND ESTABLISHMENT BASED ON PUMPING UNIT WORKING CONDITIONS AND GLOBAL FAULT IDENTIFICATION. [J]. Journal of mechanical strength, 2025, 47(1): 12-19. DOI: 10.16579/j.issn.1001.9669.2025.01.002.
针对目前抽油机井下工况故障特征分类任务难以解决,使得所建立诊断模型适应性差且识别率低的问题,通过对抽油机阀门和抽油杆运动状态的分析,首先将示功图进行数学形态学预处理;然后提出阀门开闭点获取和载荷变化特征获取的两种方法,提取到抽油机全域故障的54个全新特征,建立了抽油机工况的特征库;最后运用决策树、Logistic回归和支持向量机算法,验证了在不同工况下,该特征库均具有较好的分类效果,评估了不同故障的工况特征指标,得到各工况私有规则库。研究结果表明,提取的特征能够有效识别出抽油机全域故障,并且具有较高的识别精度。
In response to the challenging task of fault feature classification in the current working conditions of pumping units,which results in poor adaptability and low recognition rate of the established diagnosis model. The dynamometer card was pretreated by mathematical morphology through the analysis of the motion state of the pumping unit valve and the sucker rod. Then
two methods of obtaining valve opening and closing points and load variation characteristics were proposed
and 54 new features of global faults of pumping units were extracted
and the characteristic database of working conditions of the pumping unit was established.Finally
the algorithm of decision tree
logistic regression and support vector machine was used to verify that the feature database has good classification effect under different working conditions. The characteristic indexes of different fault conditions were evaluated
and the private rule database of each working condition was obtained. The research results demonstrate that the proposed features in this study are capable of effectively identifying comprehensive faults in pumping units
exhibiting a high level of recognition accuracy.
抽油机示功图特征提取故障识别阀门
Oil pumping machineDynamometer cardFeature extractionFault identificationValve
冯立涛.油田抽油机常见故障分析及处理[J].化学工程与装备,2022(1):64-65.
FENG Litao.Analysis and treatment of common faults of oilfield pumping machines[J].Chemical Engineering & Equipment,2022(1):64-65.(In Chinese)
杜娟,刘志刚,宋考平,等.基于卷积神经网络的抽油机故障诊断[J].电子科技大学学报,2020,49(5):751-757.
DU Juan,LIU Zhigang,SONG Kaoping,et al.Fault diagnosis of pumping unit based on convolutional neural network[J].Journal of University of Electronic Science and Technology of China,2020,49 (5):751-757.(In Chinese)
王晓菡.用于工况诊断的示功图特征提取方法研究[D].北京:中国石油大学,2011:1-4.
WANG Xiaohan.Study on indicator card feature extraction method for working condition diagnosis[D].Beijing:China University of Petroleum,2011:1-4.(In Chinese)
KRASNOV A N,PRAKHOVA M Y.Predictive state analytics of gas pumping units[J].Journal of Physics:Conference Series,2022,2388(1):012078.
陈紫琴.基于DBN的游梁式抽油机生产工况识别方法研究[D].沈阳:沈阳工业大学,2022:1-6.
CHEN Ziqin.Research on the identification method of production working condition to swimming beam type pumping machine based on DBN[D].Shenyang:Shenyang University of Technology,2022:1-6.(In Chinese)
杨亚勋.基于多特征融合的示功图诊断方法研究[D].大庆:东北石油大学,2016:3-4.
YANG Yaxun.Fault diagnosis of indicator diagram based on feature fusion[D].Daqing:Northeast Petroleum University,2016:3-4.(In Chinese)
LI J N,SHAO J,WANG W,et al.An evolutional deep learning method based on multi-feature fusion for fault diagnosis in sucker rod pumping system[J].Alexandria Engineering Journal,2023,66:343-355.
LUKASZ L,LECH J S.The Fourier transform as a new approach of evaluating the internal combustion engine indicator diagram[J].Journal of KONES,2017,24(4):173-180.
于泳澎.抽油机井示功图自动诊断方法的改进[J].化学工程与装备,2017,7:96-98.
YU Yongpeng.Improvement of automatic diagnosis method of pumping well dynamometer card[J].Chemical Engineering & Equipment,2017,7:96-98.(In Chinese)
许广繁,杨善林.灰色理论在有杆抽油井故障诊断中的应用[J].合肥工业大学学报(自然科学版),2013,36(10):1265-1268.
XU Guangfan,YANG Shanlin.Application of gray theory in fault diagnosis of rod-pumped well[J].Journal of Hefei University of Technology (Edition of Natural Science),2013,36(10):1265-1268.(In Chinese)
周斌,邢林林,张敏.基于八链码形状匹配的抽油机井地面示功图凡尔开闭点识别[J].科学技术与工程,2022,22(12):4788-4796.
ZHOU Bin,XING Linlin,ZHANG Min.Valve opening and closing points recognition in surface dynamometer cards from sucker-rod pumping wells based on 8-direction chain code and shape matching[J].Science Technology and Engineering,2022,22(12):4788-4796.(In Chinese)
HAN Y,LI K,GE F W,et al.Online fault diagnosis for sucker rod pumping well by optimized density peak clustering[J].ISA Transactions,2022,120:222-234.
肖维民,梁波.基于PNN网络和Freeman链码的抽油机井工况诊断[J].计算机测量与控制,2015,23(6):1885-1887.
XIAO Weimin,LIANG Bo.Working condition diagnosis of pumping unit based on PNN and Freeman chain code[J].Computer Measurement & Control,2015,23(6):1885-1887.(In Chinese)
YE Z W,YI Q J.Working-condition diagnosis of a beam pumping unit based on a deep-learning convolutional neural network[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2022,236(5):2559-2573.
JIANG J X,LI X F.Identification of indicator diagram type in the oil well by BP neural network[J].IOP Conference Series:Earth and Environmental Science,2021,781(2):022057.
SHI J F,MA W M,SONG P.Transform electric power curve into dynamometer diagram image using deep recurrent neural network[J].IEICE Transactions on Information and Systems,2018,E101.D(8):2154-2158.
张强,朱刘涛,王彦琦.基于改进胶囊神经网络的示功图诊断模型[J].电子科技大学学报,2022,51(1):117-122.
ZHANG Qiang,ZHU Liutao,WANG Yanqi.Indicator diagram diagnosis model based on improved capsule neural network[J].Journal of University of Electronic Science and Technology of China,2022,51(1):117-122.(In Chinese)
吴定海,任国全,王怀光,等.基于卷积神经网络的机械故障诊断方法综述[J].机械强度,2020,42(5):1024-1032.
WU Dinghai,REN Guoquan,WANG Huaiguang,et al.The review of mechanical fault diagnosis methods based on convolutional neural network[J].Journal of Mechanical Strength,2020,42(5):1024-1032.(In Chinese)
XING M M.Response analysis of longitudinal vibration of sucker rod string considering rod buckling[J].Advances in Engineering Software,2016,99:49-58.
薛军,陈春坤,杨振迎,等.抽油杆三维力学模型的建立与应用[J].石油化工应用,2021,40(11):75-79.
XUE Jun,CHEN Chunkun,YANG Zhenying,et al.Establishment and application of three dimensional mechanical model of sucker rod[J].Petrochemical Industry Application,2021,40(11):75-79.(In Chinese)
吕孝孝,王旱祥,刘延鑫,等.故障工况下有杆泵采油系统运行特性及示功图研究[J].中国石油大学学报(自然科学版),2020 ,44(2):117-126.
LÜ Xiaoxiao,WANG Hanxiang,LIU Yanxin,et al.Study on operating characteristics and indicator diagram of rod pump production system under fault condition[J].Journal of China University of Petroleum (Edition of Natural Science),2020,44(2):117-126.(In Chinese)
GIBBS S G.Predicting the behavior of sucker-rod pumping systems[J].Journal of Petroleum Technology,1963,15(7):769-778.
肖引昌.数学形态学在数字图像处理中的应用[J].集成电路应用,2023,40(2):297-299.
XIAO Yinchang.Application of mathematical morphology in digital image processing[J].Application of IC,2023,40(2):297-299.(In Chinese)
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构