浏览全部资源
扫码关注微信
1.太原科技大学 电子信息工程学院,太原 030024
2.先进控制与工业智能山西省重点实验室,太原 030024
孙元帅,男,1998年生,山东潍坊人,太原科技大学在读硕士研究生;主要研究方向为故障诊断;E-mail:810591471@qq.com。
谢刚(通信作者),男,1972年生,山西太原人,博士,教授;主要研究方向为机器视觉与图像处理、物联网安全与隐私、大数据驱动的智能故障诊断;E-mail:xiegang@tyust.edu.cn。
网络出版日期:2024-12-31,
收稿日期:2024-05-05,
修回日期:2024-06-07,
移动端阅览
孙元帅,孔繁钦,聂晓音等.基于图卷积和多传感融合的跨设备故障诊断方法[J].机械强度,DOI:10.16579/j.issn.1001.9669.XXXX.XX.001.
SUN Yuanshuai,KONG Fanqin,NIE Xiaoyin,et al.Cross-device fault diagnosis method based on graph convolution and multi-sensor fusion[J].Journal of Mechanical Strength,DOI:10.16579/j.issn.1001.9669.XXXX.XX.001.
孙元帅,孔繁钦,聂晓音等.基于图卷积和多传感融合的跨设备故障诊断方法[J].机械强度,DOI:10.16579/j.issn.1001.9669.XXXX.XX.001. DOI:
SUN Yuanshuai,KONG Fanqin,NIE Xiaoyin,et al.Cross-device fault diagnosis method based on graph convolution and multi-sensor fusion[J].Journal of Mechanical Strength,DOI:10.16579/j.issn.1001.9669.XXXX.XX.001. DOI:
目的
2
对于实际生产中的机械设备,很难或无法获取大量的标记数据,导致传统故障诊断方法的准确率较低。针对此问题,提出一种基于图卷积和多传感融合的跨设备故障诊断方法(Convolutional Domain Graph Convolution Network, CDGCN)。该方法可以对类标签、域标签和数据特征结构进行建模。
方法
2
首先,使用卷积神经网络从输入信号中提取特征,然后,通过图生成层挖掘样本的特征结构关系来构建实例图。利用图卷积神经网络对实例图进行建模,同时提出多传感高层特征融合方式,进行多传感器的信息融合。最后,利用分布差异度量、分类器和域判别器实现域自适应。
结果
2
所提方法可以捕获域不变特征和判别特征,实现跨设备的故障诊断。通过两个数据集的迁移试验表明,所提出的CDGCN不仅在比较方法中获得了最佳性能,而且能够提取可转移的特征进行跨设备的域自适应。
Objective
2
For mechanical equipment in actual production
it is difficult or impossible to obtain a large amount of labeled data
resulting in low accuracy of traditional fault diagnosis methods. To address this problem
a cross-device fault diagnosis method based on graph convolution and multi-sensor fusion
convolutional domain graph convolution network (CDGCN)
was proposed. This method can model class labels
domain labels
and data feature structures.
Methods
2
Firstly
a convolutional neural network was used to extract features from the input signal. Then
the feature structure relationship of the sample was mined through the graph generation layer to construct an instance graph. The instance graph was modeled using a graph convolutional neural network
and a multi-sensor high-level feature fusion method was proposed to perform multi-sensor information fusion. Finally
domain adaptation was achieved by using distribution difference metrics
classifiers
and domain discriminators.
Results
2
The proposed method can capture domain-invariant features and discriminant features
and ultimately achieve cross-device fault diagnosis. Migration experiments on two datasets show that the proposed CDGCN not only achieves the best performance among the compared methods
but also extracts transferable features for cross-device domain adaptation.
图卷积神经网络多传感器跨设备域自适应故障诊断
Graph convolutional neural networkMulti-sensorCross-deviceDomain adaptationFault diagnosis
LEI Y G,YANG B,JIANG X W,et al. Applications of machine learning to machine fault diagnosis:a review and roadmap[J]. Mechanical Systems and Signal Processing, 2020,138:106587.
雷亚国,许学方,蔡潇,等. 面向机械装备健康监测的数据质量保障方法研究[J]. 机械工程学报,2021,57(4):1-9.
LEI Yaguo,XU Xuefang,CAI Xiao,et al. Research on data quality assurance for health condition monitoring of machinery[J]. Journal of Mechanical Engineering, 2021,57(4):1-9.(In Chinese)
WANG T Y,HAN Q K,CHU F L,et al.Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox:a review[J].Mechanical Systems and Signal Processing,2019,126:662-685.
MA M,MAO Z.Deep-convolution-based LSTM network for remaining useful life prediction[J].IEEE Transactions on Industrial Informatics,2021,17(3):1658-1667.
雷亚国,贾峰,孔德同,等. 大数据下机械智能故障诊断的机遇与挑战[J]. 机械工程学报, 2018,54(5):94-104.
LEI Yaguo,JIA Feng,KONG Detong,et al. Opportunities and challenges of machinery intelligent fault diagnosis in big data era[J]. Journal of Mechanical Engineering, 2018,54(5):94-104.(In Chinese)
KHAN S,YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018,107:241-265.
HOANG D T,KANG H J.A survey on Deep Learning based bearing fault diagnosis[J].Neurocomputing,2019,335:327-335.
LEI Y G,LI N P,GUO L,et al. Machinery health prognostics:a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018,104:799-834.
王廷轩,王贵勇,刘韬,等. 域适应网络与平衡动态分布自适应的轴承变工况故障迁移诊断研究[J]. 机械强度, 2023,45(3):509-518.
WANG Tingxuan,WANG Guiyong,LIU Tao,et al. Study of domain adaptive network and balanced dynamic distribution adaptive fault migration diagnosis of bearing under variable conditions[J]. Journal of Mechanical Strength, 2023,45(3):509-518.(In Chinese)
ZHANG S Y,SU L,GU J F,et al. Rotating machinery fault detection and diagnosis based on deep domain adaptation:a survey[J].Chinese Journal of Aeronautics, 2023,36(1):45-74.
YANG B,LEI Y G,JIA F,et al. A polynomial kernel induced distance metric to improve deep transfer learning for fault diagnosis of machines[J].IEEE Transactions on Industrial Electronics, 2020,67(11):9747-9757.
XU K,LI S M,JIANG X X,et al. A renewable fusion fault diagnosis network for the variable speed conditions under unbalanced samples[J]. Neurocomputing, 2020,379:12-29.
吴定海,王怀光,宋彬,等.一种基于对称极坐标优化的轴承深度迁移诊断方法[J].机械强度,2022,44(3):541-546.
WU Dinghai,WANG Huaiguang,SONG Bin,et al.A bearing deep learning transfer diagnosis method based on optimization of symmetric polar coordinates[J].Journal of Mechanical Strength,2022,44(3):541-546.(In Chinese)
池福临,杨新宇,邵思羽,等. 基于深度收缩残差网络的轴承变工况故障诊断[J]. 计算机集成制造系统, 2023,29(4):1146.
CHI Fulin,YANG Xinyu,SHAO Siyu,et al. Bearing fault diagnosis under variable working conditions based on deep residual shrinkage networks[J]. Computer Integrated Manufacturing Systems, 2023,29(4):1146.(In Chinese)
SHAO H D,XIA M,HAN G J,et al. Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer convolutional neural network and thermal images[J]. IEEE Transactions on Industrial Informatics, 2021,17(5):3488-3496.
XING S B,LEI Y G,WANG S H,et al. Distribution-invariant deep belief network for intelligent fault diagnosis of machines under new working conditions[J]. IEEE Transactions on Industrial Electronics, 2021,68(3):2617-2625.
YANG C Y,LIU J,ZHOU K B,et al. Transferable graph features-driven cross-domain rotating machinery fault diagnosis[J]. Knowledge-Based Systems, 2022,250:109069.
YANG B,LEI Y G,JIA F,et al. An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings[J]. Mechanical Systems and Signal Processing, 2019,122:692-706.
LV M Z,LIU S X,SU X M,et al. Deep transfer network with multi-kernel dynamic distribution adaptation for cross-machine fault diagnosis[J]. IEEE Access, 2021,9:16392-16409.
WU Z Q,CHEN H L,HAN J,et al. Graph mutual mapping transfer networks for machine fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2024,20(1):995-1006.
WANG L,CAO H R,XU H,et al. A gated graph convolutional network with multi-sensor signals for remaining useful life prediction[J]. Knowledge-Based Systems, 2022,252:109340.
DEFFERRARD M,BRESSON X,VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[M]. Proceedings of the 30th International Conference on Neural Information Processing Systems.Barcelona,Spain;Curran Associates Inc. 2016:3844-3852.
LI T F,ZHOU Z,LI S N,et al.The emerging graph neural networks for intelligent fault diagnostics and prognostics:a guideline and a benchmark study[J].Mechanical Systems and Signal Processing,2022,168:108653.
LI T F,ZHAO Z B,SUN C,et al.Multireceptive field graph convolutional networks for machine fault diagnosis[J].IEEE Transactions on Industrial Electronics,2021,68(12):12739-12749.
AL SHALABI L,SHAABAN Z,KASASBEH B.Data mining:a preprocessing engine[J].Journal of Computer Science,2006,2(9):735-739.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构