浏览全部资源
扫码关注微信
西南大学 工程技术学院,重庆 400100
付强,男,1999年生,四川广安人,西南大学工程技术学院在读硕士研究生;主要研究方向为压缩感知、信号处理、深度学习;E-mail:1248116740@qq.com。
网络出版日期:2024-12-16,
收稿日期:2023-10-18,
修回日期:2023-12-06,
移动端阅览
付强,胡东,杨童亮等.基于改进压缩感知与深度多核极限学习机的轴承故障诊断方法[J].机械强度,DOI:10.16579/j.issn.1001.9669.XXXX.XX.001.
FU Qiang,HU Dong,YANG Tongliang,et al.Bearing fault diagnosis method based on improved compressed sensing and deep multi-kernel extreme learning machine[J].Journal of Mechanical Strength,DOI:10.16579/j.issn.1001.9669.XXXX.XX.001.
付强,胡东,杨童亮等.基于改进压缩感知与深度多核极限学习机的轴承故障诊断方法[J].机械强度,DOI:10.16579/j.issn.1001.9669.XXXX.XX.001. DOI:
FU Qiang,HU Dong,YANG Tongliang,et al.Bearing fault diagnosis method based on improved compressed sensing and deep multi-kernel extreme learning machine[J].Journal of Mechanical Strength,DOI:10.16579/j.issn.1001.9669.XXXX.XX.001. DOI:
目的
2
针对传统轴承故障诊断采样数据量大、诊断时间长和故障特征选择主观性强等问题,基于压缩感知(Compressed Sensing,CS)和深度多核极限学习机(Deep Multi-Kernel Extreme Learning Machine,D-MKELM)理论,提出了CS-DMKELM滚动轴承智能诊断模型。
方法
2
首先,对变换域信号阈值处理得到稀疏信号,使用高斯随机矩阵作为测量矩阵,对处理后的数据进行压缩;其次,使用压缩后的数据作为DMKELM的输入信号,利用粒子群优化(Particle Swarm Optimization,PSO)算法对关键参数进行优化,实现故障的智能诊断。
结果
2
结果表明,所提方法可使用较少的轴承诊断数据,利用DMKELM从少量测量信号中自动提取轴承的特征信息,实现了轴承的快速故障诊断。在诊断时间0.55 s的情况下,最终识别准确率可达99.29%。所提方法不仅诊断时间更短,而且诊断精度较高,为处理海量轴承数据的故障诊断提供了新的方法。
Objective
2
In response to challenges such as large sampling data
extended diagnosis time
and subjective fault feature selection in traditional bearing fault diagnosis
a CS-DMKELM intelligent diagnosis model for rolling bearings is proposed based on compressed sensing(CS) and deep multi-kernel extreme learning machine(D-MKELM) theory.
Methods
2
Firstly
sparse signals were obtained through threshold processing of transformed domain signals. A Gaussian random matrix was employed as the measurement matrix to compress the processed data. Subsequently
the compressed data was used as the input signal for the D-MKELM. Particle swarm optimization(PSO) algorithm was applied to optimize critical parameters
enabling intelligent fault diagnosis.
Results
2
Results demonstrate that the proposed method
using only a small amount of bearing diagnostic data
automatically extracts feature information of bearings from a limited number of measurement signals through the D-MKELM. The proposed method enables rapid fault diagnosis of bearings. With a diagnostic time of 0.55 s
a final recognition accuracy of 99.29% was achieved. The proposed method reduces diagnostic time and exhibits high diagnostic accuracy
providing a new approach for handling massive bearing data in fault diagnosis.
压缩感知轴承核函数极限学习机故障诊断
Compressed sensingBearingKernel functionExtreme learning machineFault diagnosis
赵志宏,赵敬娇,魏子洋.基于BiLSTM的滚动轴承故障诊断研究[J].振动与冲击,2021,40(1):95-101.
ZHAO Zhihong,ZHAO Jingjiao,WEI Ziyang.Rolling bearing fault diagnosis based on BiLSM network[J].Journal of Vibration and Shock,2021,40(1):95-101.(In Chinese)
马伦,康建设,孟妍,等.基于Morlet小波变换的滚动轴承早期故障特征提取研究[J].仪器仪表学报,2013,34(4):920-926.
MA Lun,KANG Jianshe,MENG Yan,et al.Research on feature extraction of rolling bearing incipient fault based on Morlet wavelet transform[J].Chinese Journal of Scientific Instrument,2013,34(4):920-926.(In Chinese)
高峰,申江江,曲建岭,等.基于Hilbert边际谱和IPSO-SVDD的滚动轴承故障诊断[J].电子测量与仪器学报,2017,31(6):892-898.
GAO Feng,SHEN Jiangjiang,QU Jianling,et al.Rolling bearing fault diagnosis based on Hilbert marginal spectrum and IPSO-SVDD[J].Journal of Electronic Measurement and Instrumentation,2017,31(6):892-898.(In Chinese)
武哲,杨绍普,刘永强.基于多元经验模态分解的旋转机械早期故障诊断方法[J].仪器仪表学报,2016,37(2):241-248.
WU Zhe,YANG Shaopu,LIU Yongqiang.Rotating machinery early fault diagnosis method based on multivariate empirical mode decomposition[J].Chinese Journal of Scientific Instrument,2016,37(2):241-248.(In Chinese)
陈彦龙,张培林,徐超,等.基于DCT和EMD的滚动轴承故障诊断[J].电子测量技术,2012,35(2):121-125.
CHEN Yanlong,ZHANG Peilin,XU Chao,et al.Fault diagnosis of rolling bearing based on DCT and EMD[J].Electronic Measurement Technology,2012,35(2):121-125.(In Chinese)
孟丽丽,郑磊,郑直,等.基于鲸鱼算法优化MLP的滚动轴承故障诊断[J/OL].轴承,2023:1-10[2023-10-17].http://kns.cnki.net/kcms/detail/41.1148.TH.20230627.1618.006.htmlhttp://kns.cnki.net/kcms/detail/41.1148.TH.20230627.1618.006.html.
Meng Lili,Zheng Lei,Zheng Zhi,et al.Rolling bearing fault diagnosis based on WOA-MLP[J/OL].Bearing,2023:1-10[2023-10-17].http://kns.cnki.net/kcms/detail/41.1148.TH.20230627.1618.006.html.http://kns.cnki.net/kcms/detail/41.1148.TH.20230627.1618.006.html.(In Chinese)
徐涛,裴爱岭,刘勇.基于谐波小波包和SVM的滚动轴承故障诊断方法[J].沈阳航空航天大学学报,2014,31(4):50-54.
XU Tao,PEI Ailing,LIU Yong.Fault diagnosis of roller bearings with harmonic wavelet package and SVM[J].Journal of Shenyang Aerospace University,2014,31(4):50-54.(In Chinese)
温江涛,闫常弘,孙洁娣,等.基于压缩采集与深度学习的轴承故障诊断方法[J].仪器仪表学报,2018,39(1):171-179.
WEN Jiangtao,YAN Changhong,SUN Jiedi,et al.Bearing fault diagnosis method based on compressed acquisition and deep learning[J].Chinese Journal of Scientific Instrument,2018,39(1):171-179.(In Chinese)
陈万圣,王珍,赵洪健,等.基于压缩感知与改进的深度极限学习机的轴承故障诊断方法[J].机械强度,2021,43(4):779-785.
CHEN Wansheng,WANG Zhen,ZHAO Hongjian,et al.New method for bearing intelligent diagnosis based on compressed sensing and multilayer extreme learning machine[J].Journal of Mechanical Strength,2021,43(4):779-785.(In Chinese)
HUANG G B,ZHU Q Y,SIEW C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1):489-501.
HUANG G B,ZHOU H M,DING X J,et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems,Man, and Cybernetics.Part B,Cybernetics,2012,42(2):513-529.
HUANG G B.An insight into extreme learning machines:random neurons,random features and kernels[J].Cognitive Computation,2014,6(3):376-390.
KHATAB Z E,HAJIHOSEINI A,ALI GHORASHI S.A fingerprint method for indoor localization using autoencoder based deep extreme learning machine[J].IEEE Sensors Letters,2018,2(1):1-4.
DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
CANDÈS E J.The restricted isometry property and its implications for compressed sensing[J].Comptes Rendus Mathematique,2008,346(9):589-592.
ELAD M,AHARON M.Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Transactions on Image Processing,2006,15(12):3736-3745.
许学斌,赵雨晴,路龙宾,等.基于LBP的粒子群优化混合核函数ELM的蔬菜水果图像分类方法[J].机械设计与研究,2021,37(4):15-20.
XU Xuebin,ZHAO Yuqing,LU Longbin,et al.Research on vegetable and fruit image classification method based on LBP particle swarm optimization mixed kernel function ELM[J].Machine Design & Research,2021,37(4):15-20.(In Chinese)
李可军,徐延顺,魏本刚,等.基于PSO-HKELM的变压器顶层油温预测模型[J].高电压技术,2018,44(8):2501-2508.
LI Kejun,XU Yanshun,WEI Bengang,et al.Prediction model for top oil temperature of transformer based on hybrid kernel extreme learning machine trained and optimized by particle swarm optimization[J].High Voltage Engineering,2018,44(8):2501-2508.(In Chinese)
刘明,周水生,吴慧.一种新的混合核函数支持向量机[J].计算机应用,2009,29(增刊2):167-168.
LIU Ming,ZHOU Shuisheng,WU Hui.SVM based on new mixed kernel function[J].Journal of Computer Applications,2009,29(Suppl.2):167-168.(In Chinese)
胡志勇,牛家骅,郭丽娜,等.基于时域能量划分和PSO-SVM的发动机故障诊断[J].汽车工程,2016,38(1):86-90.
HU Zhiyong,NIU Jiahua,GUO Lina,et al.Engine fault diagnosis based on time-domain energy division and PSO-SVM algorithm[J].Automotive Engineering,2016,38(1):86-90.(In Chinese)
SMITH W A,RANDALL R B.Rolling element bearing diagnostics using the case western reserve university data:a benchmark study[J].Mechanical Systems and Signal Processing,2015,64:100-131.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构