浏览全部资源
扫码关注微信
1. 中石油长庆油田分公司页岩油产能建设项目组
纸质出版日期:2024-04-15,
移动端阅览
张佳, 李林峰, 王浩杰, 等. 基于IWOA-LSSVM的管道腐蚀剩余强度预测研究[J]. 机械强度, 2024,46(2):468-475.
ZHANG Jia, Ll LinFeng, WANG HaoJie, et al. RESEARCH ON THE REMAINING INTENSITY OF PIPELINE CORROSION BASED ON IWOA-LSSVM[J]. Journal of Mechanical Strength , 2024,46(2):468-475.
张佳, 李林峰, 王浩杰, 等. 基于IWOA-LSSVM的管道腐蚀剩余强度预测研究[J]. 机械强度, 2024,46(2):468-475. DOI: 10.16579/j.issn.1001.9669.2024.02.028.
ZHANG Jia, Ll LinFeng, WANG HaoJie, et al. RESEARCH ON THE REMAINING INTENSITY OF PIPELINE CORROSION BASED ON IWOA-LSSVM[J]. Journal of Mechanical Strength , 2024,46(2):468-475. DOI: 10.16579/j.issn.1001.9669.2024.02.028.
针对管道腐蚀剩余强度的预测问题,提出了一种基于改进鲸鱼优化算法(Improved Whale Optimization Algorithm,IWOA)-最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)组合算法模型的剩余强度预测方法。首先对管材腐蚀剩余强度的影响因素进行分析,在此基础上,对LSSVM算法和IWOA进行理论介绍,提出模型的组合方法。以我国某油田的L245N材质管道为例,使用部分管材腐蚀剩余强度及其影响因素数据对组合模型进行训练,对另一部分数据进行预测,以此验证提出的组合模型的准确性及先进性。研究表明,所提出的IWOA-LSSVM模型在预测L245N管材腐蚀剩余强度的过程中,其均方根误差为0.323 5%,平均相对误差为2.17%,拟合优度为0.988,三项评价指标均优于PSO-LSSVM 模型和WOA-LSSVM 模型。因此,使用IWOA-LSSVM模型可以对 L245N管材腐蚀剩余强度进行准确预测,进而为L245N管材的维修及更换提供数据支持。
In response to pipeline corrosion surplus intensity
a surplus intensity prediction method based on the Improved Whale Optimization Algorithm (IWOA ) -Least Square Support Vector Machine (LSSVM) combination algorithm model. Firstly the influencing factors of the surplus intensity of pipeline corrosion. On this basis
the theoretical introduction of the LSSVM and IWOA were analyzed was introduced to propose a combination method of the model. Taking the L245N material pipeline of a certain oil field in our country as an example
the use of some pipes to corrode the remaining strength and its influencing factors to train the combination model
and predict another part of the data. Essence studies have shown that the IWOA-LSSVM model proposed at the institute was in the process of conducting pipeline corrosion surplus intensity predictions. Its average root error is 0.323 5%
the average relative error is 2. 17%
and the fitting superiority is 0.988. The three evaluation indicators are better than the PSO-LSSVM model and the WOA-LSSVM model. Therefore
using the IWOA-LSSVM model can accurately predict the remaining intensity of pipeline corrosion
and then provide data support for the maintenance and replacement of pipelines.
管材腐蚀剩余强度改进鲸鱼优化算法最小二乘支持向量机L245N材质
Pipe corrosionResidual strengthImproved whale optimization algorithmLeast square support vector machineL245N material
0
浏览量
237
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构