浏览全部资源
扫码关注微信
1. 东莞理工学院机械工程学院
2. 大冶有色设计研究院有限公司
3. 青海大学土木工程学院
4. 东莞市轨道交通有限公司
纸质出版日期:2024-04-15,
移动端阅览
武静, 饶子玉, 沈宇驰, 等. 利用分形维数和BP神经网络实现超声导波缺陷分类的实验研究[J]. 机械强度, 2024,46(2):328-338.
WU Jing, RAO ZiYu, SHEN YuChi, et al. EXPERIMENTAL RESEARCH ON ULTRASONIC GUIDED WAVES DEFECT CLASSIFICATION BASED ON FRACTIONAL DIMENSION AND BP NEURAL NETWORK[J]. Journal of Mechanical Strength , 2024,46(2):328-338.
武静, 饶子玉, 沈宇驰, 等. 利用分形维数和BP神经网络实现超声导波缺陷分类的实验研究[J]. 机械强度, 2024,46(2):328-338. DOI: 10.16579/j.issn.1001.9669.2024.02.010.
WU Jing, RAO ZiYu, SHEN YuChi, et al. EXPERIMENTAL RESEARCH ON ULTRASONIC GUIDED WAVES DEFECT CLASSIFICATION BASED ON FRACTIONAL DIMENSION AND BP NEURAL NETWORK[J]. Journal of Mechanical Strength , 2024,46(2):328-338. DOI: 10.16579/j.issn.1001.9669.2024.02.010.
近年来,超声导波技术广泛应用于管道的无损检测中。然而,不同微小缺陷类型(如裂纹、孔洞、凹陷变形等)引起的缺陷回波微弱且无明显不同,使得微小缺陷的识别和分类始终是检测难点。为识别不同微小缺陷的类型,利用对微弱周期信号敏感的 Duffing系统,提出了基于 Duffing系统的动力学指标分形维数和反向传播(Back Propagation,BP)神经网络相结合的信号特征分类方法。利用BP神经网络对输入参数进行训练。其中,输入参数分为两组。第一组输入参数为由小波能量值、时域参数、分形维数特征等组成的21维
k
1
向量。第二组作为对照组,其输入参数为波能量值、时域参数组成的18维
k
2
向量。上述两组均输出3维向量,即输出缺陷类型。数值模拟及实验验证均表明,在加入混沌指标分形维数后识别准确率明显提升。其中,数值模拟的准确率由86.35%提升至91.85%,实验中的准确率由83.16%提升至86.06%。数值模拟和实验都验证了利用分形维数和BP神经网络结合能够更好地完成管道缺陷的识别和分类。创新性地将分形维数作为BP神经网络的特征输入,有效提高了分类的准确率,实现了因管道中小缺陷实验数据不足或检测难度大的有效识别和精确分类。研究对于实际工程中管道缺陷分类,预防管道事故具有重要意义。
In recent years
ultrasonic guided waves technology has been widely used in nondestructive pipeline detection. However
the weak and insignificant defect echoes caused by the different types of tiny defects such as cracks
void
and dent deformation makes it difficult to identify and classify different types of miero defects. In order to identify the types of different tiny defects
the sensitivity of Duffing system to weak periodie signals was exploited and a signal feature classification method based on the dynamic index fractal dimension of the Duffing system and the back propagation (BP) neural network was proposed. By extracting the fractal dimension、 wavelet cocfficient and time domain signal parameters of the Duffing oscillator after inputting the defect signal to be tested as the characteristic parameters of the echo signal
inputting the BP neural network to complete the construction of the BP neural network
realizing the learning of the weak ultrasonie guided wave signal
classification. The numerical simulation and experimental verification show that the recognition accuracy is significantly improved by taking the fractal dimension of chaos index of three Duffing oscillators into consideration. The accuracy of numerical simulation is increased from 86.35% to 91.85%、 and the accuracy of experimental verification is increased from 83.16% to 86.06%. The numerical simulation and experiment verify that the combination of fractal dimension and BP neural network can effectively improve the identification of pipeline features and defects. The innovative use of fractal as the feature input of BP neural network effectivel y improves the accuracy of classification
facilitating identification and accurate classification
particularly in cases of insufficient experimental data or difficult detection scenarios invol ving small defects in the pipeline. The novel classification method that has been proposed has important significance for the pipeline defects classification and accidents prevention.
管道超声导波分形维数BP神经网络
PipelineUltrasonic guided waveFractal dimensionBP neural network
0
浏览量
171
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构