1. 新疆大学机械工程学院
扫 描 看 全 文
柴同, 袁逸萍, 马军岩, 等. 基于K-CNN和N-GRU的风电机组发电机状态预测[J]. 机械强度, 2023,(5):1043-1049.
CHAI Tong, YUAN YiPing, MA JunYan, et al. STATE PREDICTION OF WIND TURBINE GENERATOR BASED ON K-CNN AND N-GRU (MT)[J]. Journal of Mechanical Strength , 2023,(5):1043-1049.
柴同, 袁逸萍, 马军岩, 等. 基于K-CNN和N-GRU的风电机组发电机状态预测[J]. 机械强度, 2023,(5):1043-1049. DOI: 10.16579/j.issn.1001.9669.2023.05.005.
CHAI Tong, YUAN YiPing, MA JunYan, et al. STATE PREDICTION OF WIND TURBINE GENERATOR BASED ON K-CNN AND N-GRU (MT)[J]. Journal of Mechanical Strength , 2023,(5):1043-1049. DOI: 10.16579/j.issn.1001.9669.2023.05.005.
为了检测风电机组发电机异常、减少由故障引起的停机事件发生,基于真实风电场的数据采集与监视控制(Supervisory Control and Data Acquisition, SCADA)系统记录的多维传感器参数,提出一种K-CNN(Convolutional Neural Network,卷积神经网络)和N-GRU(Gated Recurrent Unit,门控循环单元)相结合的深度学习框架,建立风电机组发电机状态预测模型。首先,用Pearson相关系数分析状态参数相关性;之后,通过权重系数加权得到一维融合参数;其次,针对传统特征提取过程中忽略浅层特征的问题,采用CNN分层提取一维融合参数的特征,并利用核主成分分析(Kernel Principal Component Analysis, KPCA)将不同层的特征提取结果降为一维;然后,针对传统GRU算法参数欠优化问题,利用神经网络架构搜索改进GRU算法,得到N-GRU模型,将降维后的特征提取结果输入N-GRU做预测并得到重构误差,通过设定告警阈值实现状态评估;最后,以新疆某风场中2 MW风电机组为例,验证了该模型的有效性与准确性。
In order to detect abnormal wind turbine generator and reduce the occurrence of outages, a deep learning framework combining K-CNN and N-GRU is proposed based on multi-dimensional sensor parameters recorded in real wind farm SCADA system, and a wind turbine generator state prediction model is established. Firstly, the correlation of state parameters was analyzed by Pearson correlation coefficient, and then the one-dimensional fusion parameters were weighted by weight coefficient. Secondly, to solve the problem of ignoring shallow features in traditional feature extraction, CNN was used to extract the features of one-dimensional fusion parameters in layers, and KPCA was used to reduce the feature extraction results of different layers to one dimension. Then, to solve the problem of parameter optimization of the traditional GRU algorithm, the neural network architecture search was used to improve the GRU algorithm, and the N-GRU model was obtained. The feature extraction results after dimensionality reduction were input into N-GRU for prediction and reconstruction error was obtained, then the state evaluation was realized by setting the alarm threshold. Finally, a 2 MW wind turbine in a wind farm in Xinjiang was taken as an example to verify the model validity and model accuracy.
Pearson相关系数CNN分层特征提取核主成分分析N-GRU模型重构误差
Pearson correlation coefficientCNN stratified feature extractionKernel principal component analysisN-GRU modelReconstruction error
0
浏览量
37
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构