1. 内蒙古科技大学机械工程学院
2. 内蒙古科技大学矿业研究院
3. 中国兵器内蒙古第一机械集团有限公司科研所
4. 中国兵器内蒙古第一机械集团有限公司工艺研究所
5. 特种车辆及其传动系统智能制造国家重点实验室
6. 中国兵器内蒙古第一机械集团有限公司精益运营管理部
扫 描 看 全 文
秦波, 罗权毅, 冯卫卫, 等. 基于相关能量波动评估的学习样本筛选与深度置信神经网络的滚动轴承故障诊断研究[J]. 机械强度, 2023,(2):262-270.
QIN Bo, LUO QuanYi, FENG WeiWei, et al. FAULT DIAGNOSIS OF ROLLING BEARING BASED ON LEARNING SAMPLE SELECTION VIA CORRELATION ENERGY FLUCTUATION EVALUATION AND DEEP BELIEF NEURAL NETWORK (MT)[J]. Journal of Mechanical Strength , 2023,(2):262-270.
秦波, 罗权毅, 冯卫卫, 等. 基于相关能量波动评估的学习样本筛选与深度置信神经网络的滚动轴承故障诊断研究[J]. 机械强度, 2023,(2):262-270. DOI: 10.16579/j.issn.1001.9669.2023.02.002.
QIN Bo, LUO QuanYi, FENG WeiWei, et al. FAULT DIAGNOSIS OF ROLLING BEARING BASED ON LEARNING SAMPLE SELECTION VIA CORRELATION ENERGY FLUCTUATION EVALUATION AND DEEP BELIEF NEURAL NETWORK (MT)[J]. Journal of Mechanical Strength , 2023,(2):262-270. DOI: 10.16579/j.issn.1001.9669.2023.02.002.
在数据驱动的滚动轴承状态智能辨识中,针对辨识模型构建过程中由于学习样本“质量差”造成其故障识别率低的问题,提出一种如何筛选学习样本的准则来提升基于深度置信神经网络滚动轴承智能辨识模型识别率的方法。首先,基于变分模态分解将具有时变调制特性的滚动轴承振动信号分解为有限个表征原信号不同成分的本征模函数分量;其次,根据其故障能量波动及其相关来量化并评估上述每个分量包含故障成分的比重,并据此对振动信号进行筛选重构来获取学习样本;最后,将上述学习样本集作为深度置信网络的输入来构建滚动轴承的故障辨识模型。实验结果表明,所提方法不仅筛选出滚动轴承振动信号中包含故障主成分的本征模函数分量并实现学习样本集构建,而且提高了基于振动数据的滚动轴承状态辨识模型的故障识别率。
The data-driven intelligent diagnosis of rolling bearing status suffers from low recognition rate due to the poor quality of learning samples in the process of identification model construction. To address this problem, a method is proposed to improve the recognition rate of the rolling bearing intelligent diagnosis model by selecting learning samples using the deep belief neural network. First, aiming at the time-varying modulation characteristics of the rolling bearing vibration signal, a finite number of intrinsic mode function components were decomposed using variational mode decomposition, which represents different components of the original signal. Secondly, according to the fault energy fluctuations and correlation of each component, the proportion of fault information in each intrinsic mode function components is quantitatively evaluated. On the basis of this, the vibration signal is screened and reconstructed to obtain learning samples. Finally, the obtained samples are used as the input of the deep belief network, and the fault identification model of the rolling bearing is constructed accordingly. Experimental results show that the proposed method is capable of screening out the intrinsic mode function components of the rolling bearing vibration signal, which contains the main components of the fault and realizes the construction of learning sample sets. Moreover, it improves the fault recognition rate of the rolling bearing state identification model based on vibration data.
学习样本筛选相关能量波动评估滚动轴承深度置信神经网络故障识别率
Learning sample screeningCorrelation energy fluctuation evaluationRolling bearingDeep belief neural networkFault recognition rate
0
浏览量
5
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构