1. 焦作师范高等专科学校
2. 电子科技大学长三角研究院,湖州
3. 电子科技大学广东电子信息工程研究院
扫 描 看 全 文
毋高峰, 毋亚文, 智鹏鹏, 等. 基于GA加权网络的转向架构架多目标可靠性优化设计[J]. 机械强度, 2022,44(4):859-866.
WU GaoFeng, WU YaWen, ZHI PengPeng, et al. MULTI-OBJECTIVE RELIABILITY OPTIMIZATION DESIGN OF BOGIE FRAME BASED ON GA WEIGHTED NETWORK[J]. 2022,44(4):859-866.
毋高峰, 毋亚文, 智鹏鹏, 等. 基于GA加权网络的转向架构架多目标可靠性优化设计[J]. 机械强度, 2022,44(4):859-866. DOI: 10.16579/j.issn.1001.9669.2022.04.015.
WU GaoFeng, WU YaWen, ZHI PengPeng, et al. MULTI-OBJECTIVE RELIABILITY OPTIMIZATION DESIGN OF BOGIE FRAME BASED ON GA WEIGHTED NETWORK[J]. 2022,44(4):859-866. DOI: 10.16579/j.issn.1001.9669.2022.04.015.
为准确表征构架结构参数与响应间的高度非线性关系,提升其可靠性设计水平,提出了一种基于GA加权网络的多目标可靠性优化设计方法。首先,构建构架参数化分析模型并开展试验设计,进而获取构架响应与不确定参数的样本数据;其次,建立响应与不确定参数的初始BP模型并对其进行数学模型化处理,在此基础上,引入四种权重系数并利用GA探寻其最优组合方式,进而提升初始BP模型的预测精度,从而更加精确地表达构架响应与不确定参数的内在关系;最后,以构架多指标失效概率为目标函数构建优化模型,并开展构架多目标可靠性优化设计。研究结果表明:改进模型预测结果与试验样本一致性更佳,两者在标准工况下的最大应力响应绝对误差小于1 MPa;通过该方法获取的构架设计参数组合方式,能够在一定程度上提升构架综合可靠性能,该结果可为构架设计参数的调整及优化提供参考。
In order to accurate reflect the highly non-linear relationship between structural parameter uncertainty of frame and its responses, and promote reliability design level of frame. A multi-objective reliability optimization design method based on GA weighted network is proposed. Firstly, establish the parametric analysis model of the frame and carry out the experimental design. After that, the sample data of frame responses and uncertain parameters are obtained. Secondly, the initial BP neural network between responses and uncertain parameters is established. Furthermore, using mathematical model to express BP neural network. On this basis, four kinds of weight coefficients are introduced. Then the GA method is used to find optimal combination mode of weight coefficients, so as to improve the accuracy of the initial BP neural network model. Moreover, make the internal relationship between frame responses and uncertain parameters more accurate. Finally, taking the multi index failure probability of the frame as the objective function, the optimization model is constructed. And the multi-objective reliability optimization design of frame is carried out. The results show that there is a better uniformity of prediction results between improved model and test sample. The absolute error of maximum stress response is less than 1 MPa of them under standard working condition. The new frame parameter combination which is obtained by this method not only improve the frame comprehensive reliability, but also provides a reference for the adjustment and optimization of its design parameters.
转向架构架多目标优化可靠性遗传算法BP神经网络
Bogie frameMulti-objective optimizationReliabilityGenetic algorithmBP neural network
0
浏览量
33
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构