1. 华东交通大学电气与自动化工程学院
2. 华中科技大学水电与数字化工程学院
3. 宁波市金榜汽车电子有限公司
扫 描 看 全 文
陈晓玥, 葛荡, 黄江平, 等. 基于综合差异挖掘的水电机组仿生智能故障诊断[J]. 机械强度, 2020,42(6):1271-1276.
CHEN XiaoYue, GE Dang, HUANG JiangPing, et al. THE BIONIC INTELLIGENT FAULT DIAGNOSIS BASED ON COMPREHENSIVE DIFFERENCES MINING FOR HYDRO TURBINE[J]. 2020,42(6):1271-1276.
陈晓玥, 葛荡, 黄江平, 等. 基于综合差异挖掘的水电机组仿生智能故障诊断[J]. 机械强度, 2020,42(6):1271-1276. DOI: 10.16579/j.issn.1001.9669.2020.06.001.
CHEN XiaoYue, GE Dang, HUANG JiangPing, et al. THE BIONIC INTELLIGENT FAULT DIAGNOSIS BASED ON COMPREHENSIVE DIFFERENCES MINING FOR HYDRO TURBINE[J]. 2020,42(6):1271-1276. DOI: 10.16579/j.issn.1001.9669.2020.06.001.
对于具有强耦合性和不确定性的水电机组故障,基于统一特征向量的故障表征方法容易淹没有效特征的表征效果,直接限制了故障诊断的准确性和时效性。鉴于此,提出一种仿生故障诊断方法,该方法模仿人脑思维,提出关联特征向量概念,并用特征选择树描述其逻辑结构,以特征提取树求取。以其嵌套结构深层次挖掘故障之间的错综复杂关系,实现对水电机组故障之间量差异和质差异的综合挖掘,深层次揭示不同故障间以及故障与特征之间的固有联系,有效提取不同故障的本质区别,提高故障表征的有效性。进而结合概率神经网络实现智能分类。实验结果表明,该方法能够完成水电机组的故障诊断,同时取得了优秀的诊断有效性和时效性。
For the faults of hydropower unit with strong coupling and uncertainty,the traditional fault expression method based on the uniform feature vector is easy to submerge the effect of fault expression and limit the fault diagnosis accuracy and timeliness directly.Given this,we presented a bionic fault diagnosis method,which imitates the human brain thinking and proposes the concept of dependent feature vector(DFV),which logical structure is described by feature selection tree and extracted by feature extraction tree.DFV deeply excavates the intricate relationship between faults by using its nested structure,and realizes the comprehensive mining of the quantity and quality differences between faults of hydroelectric units.It deeply reveals the intrinsic relationship between different faults and faults and features,effectively extracts the essential differences of different faults,and improves the validity of fault expression.Furthermore,the intelligent classification method is realized by combining DFV and probabilistic neural network,the experimental results show that the method can complete the fault diagnosis of hydropower units and achieve excellent diagnostic validity and timeliness.
水电机组关联特征向量综合差异挖掘仿生诊断特征选择
Hydroelectric generating setDependent feature vectorComprehensive differences miningBionic fault diagnosisFeature selection
0
浏览量
119
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构