1. 内蒙古科技大学机械工程学院
2. 特种车辆及其传动系统智能制造国家重点实验室
3. 中国人民解放军驻六一七厂军事代表室
扫 描 看 全 文
张鲁洋, 秦波, 赵文军, 等. 基于两类特征与AFSA优化SVM的滚动轴承故障诊断研究[J]. 机械强度, 2019,41(4):807-813.
ZHANG LuYang, QIN Bo, ZHAO WenJun, et al. ROLLING BEARING FAULT DIAGNOSIS BASED TWO TYPES OF FEATURES AND AFSA IMPROVED SVM[J]. 2019,41(4):807-813.
张鲁洋, 秦波, 赵文军, 等. 基于两类特征与AFSA优化SVM的滚动轴承故障诊断研究[J]. 机械强度, 2019,41(4):807-813. DOI: 10.16579/j.issn.1001.9669.2019.04.007.
ZHANG LuYang, QIN Bo, ZHAO WenJun, et al. ROLLING BEARING FAULT DIAGNOSIS BASED TWO TYPES OF FEATURES AND AFSA IMPROVED SVM[J]. 2019,41(4):807-813. DOI: 10.16579/j.issn.1001.9669.2019.04.007.
针对非线性、非平稳的滚动轴承振动信号特征"难表征"和基于支持向量机(Support vector machine, SVM)的故障分类模型"精度低"的问题,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)、峭度图(Kurtogram)与人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)优化SVM相结合的滚动轴承状态辨识方法。首先,利用Kurtogram算法、相关系数最大准则"筛选"出原信号经VMD后包含有效故障信息的本征模函数(Intrinsic Mode Functions, IMF),并计算其形态谱熵和能量熵构建有效特征向量集;其次,利用AFSA寻找最优的惩罚系数C和高斯核宽度系数σ的核函数系数组合(C、σ);并将有效特征向量集作为上述算法的输入建立滚动轴承状态辨识模型。实验结果表明,所提方法不仅能凸显原信号中的有效故障成份,同时也提高了模型学习效率和分类精度。
To monitor the health of rolling bearing, the vibration signals are always used for fault diagnosis. However, the non-linear and non-stationary characteristics of vibration signals have not been solved in current methods. In this work, an intelligent fault diagnosis method is proposed, which is a sequential combinations of variational mode decomposition(VMD), Kurtogram, and artificial fish algorithm(AFSA). To begin, original vibration signals are decomposed into intrinsic mode functions(IMFs) using VMD, among which the most effective fault information is selected based on the Kurtogram algorithm and the rules of maximum correlation coefficients. Then the feature vectors are identified using the morphological entropy and energy entropy of the above IMFs. Next, two crucial tunable parameters, penalty coefficient C and Gaussian kernel width coefficient σ are optimized through AFSA algorithm. At last, the fault diagnosis model is developed based on AFSA-SVM algorithm, in which the extracted fault features are employed as inputs. The experimental results show that the proposed method accurately identifies fault features of the original signal. It has also improved model learning efficiency and classification accuracy.
变分模态分解峭度图人工鱼群核函数参数最优组合
Variational mode decompositionKurtogramArtificial fish swarm algorithmOptimal combination of kernel function parameters
0
浏览量
195
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构