浏览全部资源
扫码关注微信
1.中国科学院长春光学精密机械与物理研究所,长春130033
2.University of Chinese Academy of Sciences,Beijing 100049,China
杨立保,男,1972年生,河北唐山人,中国科学院长春光学精密机械与物理研究所研究员,博士,博士研究生导师,主要研究方向为大口径光电跟踪系统关键技术以及空间光学载荷机构。
网络出版日期:2024-08-16,
扫 描 看 全 文
李英杰,杨立保,陈涛等.船载大口径望远镜跟踪架的稳定性分析[J].机械强度,
LI YingJie,YANG LiBao,CHEN Tao,et al.STABILITY ANALYSIS OF A SHIPBORNE LARGE APERTURE TELESCOPE TRACKING FRAME[J].Journal of Mechanical Strength,
李英杰,杨立保,陈涛等.船载大口径望远镜跟踪架的稳定性分析[J].机械强度, DOI:10.16579/j.issn.1001-9669...001.
LI YingJie,YANG LiBao,CHEN Tao,et al.STABILITY ANALYSIS OF A SHIPBORNE LARGE APERTURE TELESCOPE TRACKING FRAME[J].Journal of Mechanical Strength, DOI:10.16579/j.issn.1001-9669...001.
为深入了解船载大口径望远镜跟踪架结构的稳定性,以典型的地平式望远镜跟踪架为基础,对其稳定性进行研究。根据设备在船载、舰载情况下所承受的外部载荷,将外部载荷参数化并输入有限元软件。利用前处理软件联合有限元软件对其在静态风载下的结构变形进行分析。然后对结构固有频率进行求解,提出一种计算简单的响应谱分析计算代替冗杂的随机响应分析,进而对动态风载和海浪激励下的设备进行稳定性分析。根据分析结果得出的应力和形变值,确保船载望远镜跟踪架在理论上满足船载条件下的强度要求和设计精度要求。在静态风载作用下,求解得到跟踪架结构的最大应力值约为14.07 MPa,小于钢的屈服强度355 MPa;最大形变量约为0.02 mm,小于设计精度误差同轴度
<math id="M1"><mi>ϕ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63990345&type=
2.87866688
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63990346&type=
2.03200006
0.1 mm;求解1~6阶固有频率模态值为40.15、49.65、66.86、82.93、91.38、115.89 Hz;在动态风载作用下,求解得到结构应力峰值为3.92 MPa,最大形变量为0.01 mm;在海浪激励作用下,结构应力峰值为5.88 MPa,最大形变量为0.02 mm;均小于钢的屈服强度和设计精度误差同轴度。模态测试试验得到的模态值与计算模态值误差均在10%内,结合理论仿真和实际试验,该跟踪架结构可在船载条件下正常工作。
In order to gain insight into the stability of the tracking frame struc
ture of shipborne large-aperture telescopes,the stability of typical ground-level telescope tracking frames was studied. According to the external load borne by the equipment in the case of ship, the external load was parameterized and entered into the finite element software. The pre-treatment software and finite element software were used to analyze the structural deformation under static wind load. Then, the natural frequency of the structure was solved, and a simple response spectrum analysis calculation was proposed instead of the tedious random response analysis to analyze the stability of the equipment under dynamic wind load and wave excitation. According to the stress and deformation values obtained from the results, it was ensured that the shipborne telescope tracking frame theoretically meets the strength requirements and design accuracy requirements under shipborne conditions. Under the static wind load, the maximum stress value of the tracking frame structure is about 14.07 MPa, which was less than the yield strength of steel 355 MPa, the maximum deformation variable was about 0.02 mm, which was less than the design accuracy error coaxiality
<math id="M2"><mi>ϕ</mi></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63990345&type=
2.87866688
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=63990346&type=
2.03200006
0.1 mm, and the natural frequency 1~6th order mode value was 40.15 Hz, 49.65 Hz, 66.86 Hz, 82.93 Hz, 91.38 Hz, 115.89 Hz. Under dynamic wind load, the peak value of structural stress was 3.92 MPa and the maximum deformation variable was 0.01 mm, and under the excitation of ocean waves, the peak of structural stress was 5.88 MPa and the maximum deformation variable was 0
.02 mm, which was less than the yield strength and design accuracy error coaxiality of steel. The error between the modal value obtained by the modal test and the calculated modal value is within 10%. Combining theoretical simulation and practical tests, the tracker structure can work normally under shipborne conditions.
船载望远镜跟踪架有限元分析模态测试
Shipborne telescopesTracking rackFinite element analysisModal testing
PRABAHAR P, RADHAKRISHNAN N.Thirty meter telescope(TMT) research as reflected in web of science:A study[J].Science & Technology Libraries,2022,41(4):440-452.
ITOH N,MIKAMI I,NOGUCHI T,et al.Mechanical structure of JNLT:analysis of mirror deflection due to wind loading[J].Advanced Technology Optical Telescopes Ⅳ,1990,1236:866-877.
DE CICCO D,BAUER F E,PAOLILLO M ,et al.A structure function analysis of VST-COSMOS AGN[J].Astronomy & Astrophysics,2022,664:A117.
KAN F W,EGGERS D W.Wind vibration analyses of Giant Magellan Telescope[J].SPIE Proceedings,2006,6271:271-283.
冯树龙,张新,翁志成,等.温度对大口径主镜面形变形的影响分析[J].光学技术,2005,31(1):41-43.
FENG ShuLong,ZHANG Xin,WENG ZhiCheng,et al.Study on deformation of surface figure of large-aperture mirror in temperature field[J].Optical Technique,2005,31(1):41-43(In Chinese).
周超.大口径望远镜系统建模及仿真分析研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2011:57-79.
ZHOU Chao.Research on modeling and simulation analysis for large telescope system[D].Changchun:Changchun Institute of Optics,Fine Mechanics and Physics,Graduate School of Chinese Academy of Sciences,2011:57-79.
赵勇志,王文攀,段文.1.2 m望远镜跟踪架结构设计与分析[J].长春理工大学学报(自然科学版),2019,42(1):64-67.
ZHAO YongZhi,WANG WenPan,DUAN Wen.Structural design and analysis of the 1.2 m telescope tracking mount[J].Journal of Changchun University of Science and Technology(Natural Science Edition),2019,42(1):64-67(In Chinese).
伞晓刚.1 m口径光电经纬仪关键部件优化设计与仿真分析研究[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2013:61-90.
SAN XiaoGang.Research on optimization design and simulation analysis for the key components of1m aperture photoelectric theodolite[D].Changchun: Changchun Institute of Optics,Fine Mechanics and Physics,Graduate School of Chinese Academy of Sciences,2013:61-90(In Chinese).
王国民,李国平,崔向群,等.LAMOST焦面机构的有限元分析与优化设计[J].中国制造业信息化,2004,33(7):91-93.
WANG GuoMin,LI GuoPing,CUI XiangQun,et al.Finite element analysis and optimization of LAMOST focal mechanism[J].Mie of China,2004,33(7):91-93(In Chinese).
ZUO H,YANG D H,LI G P.The finite element modeling and thermal analysis of the special focal plane of LAMOST[C]//SPIE Proceedings","Ground-based and Airborne Telescopes III.San Diego,California,USA.SPIE,2010,8:77335I.
张岩,陈宝刚,李洪文,等.地平式望远镜跟踪机架结构设计与分析[J].应用光学,2020,41(5):885-890.
ZHANG Yan,CHEN BaoGang,LI HongWen,et al.Structure design and analysis of tracking frame for horizontal telescope[J].Journal of Applied Optics,2020,41(5):885-890(In Chinese).
王洪浩,王建立,陈涛,等.地基大口径望远镜重力弯曲引起的指向变化检测与修正[J].光学精密工程,2022,30(23):3021-3030.
WANG HongHao,WANG JianLi,CHEN Tao,et al.Measurement and calibration of optical axis changes caused by gravity for ground-based large-aperture telescope[J].Optics and Precision Engineering,2022,30(23):3021-3030(In Chinese).
安其昌,张景旭,杨飞,等.大口径望远镜风载分析综述[J].机电工程,2015,32(12):1649-1652.
AN QiChang,ZHANG JingXu,YANG Fei,et al.Overview of wind load analysis of large telescope[J].Journal of Mechanical & Electrical Engineering,2015,32(12):1649-1652(In Chinese).
BLUME K,RÖGER M,PITZ-PAAL R.Simplified analytical model to describe wind loads and wind-induced tracking deviations of heliostats[J].Solar Energy,2023,256:96-109.
武岳.风工程与结构抗风设计[M].哈尔滨:哈尔滨工业大学出版社,2014:15-26.
WU Yue.Wind engineering and wind-resistant design of structures[M].Harbin:Harbin Institute of Technology Press,2014:15-26(In Chinese).
杨立保,李艳红,伞晓刚,等.应用新轴系结构改善光电跟踪系统谐振频率特性[J].光学精密工程,2017,25(11):2889-2894.
YANG LiBao,LI YanHong,SAN XiaoGang,et al.Improvement of resonant frequency characteristics of photoelectric tracking system with new bearing structure[J].Optics and Precision Engineering,2017,25(11):2889-2894(In Chinese).
邓永停,李洪文,陈涛.2 m级望远镜跟踪架控制系统动态性能分析[J].光学精密工程,2018,26(3):654-661.
DENG YongTing,LI HongWen,CHEN Tao.Dynamic analysis of two meters telescope mount control system[J].Optics and Precision Engineering,2018,26(3):654-661(In Chinese).
江民圣.ANSYS Workbench 19.0基础入门与工程实践[M].北京:人民邮电出版社,2019:177-183.
JIANG MinSheng.ANSYS Workbench 19.0 basic introduction and engineering practice[M].Beijing:Posts & Telecom Press,2019:177-183(In Chinese).
ZHANG M J,ZHANG J X,CHEN H Y,et al.Probabilistic wind spectrum model based on correlation of wind parameters in mountainous areas:Focusing on von Karman spectrum[J].Journal of Wind Engineering and Industrial Aerodynamics,2023:234-237.
CHEYNET E, DANIOTTI N, BOGUNOVIĆ JAKOBSEN J,et al.Unfrozen skewed turbulence for wind loading on structures[J].Applied Sciences,2022,12(19):9537.
HUTAHAEAN S.Correlation of weighting coefficient at weighted total acceleration with Rayleigh distribution and with pierson-moskowitz spectrum[J].International Journal of Advanced Engineering Research and Science,2019,6(3):249-252.
MAZZARETTO O M,MENÉNDEZ M,LOBETO H.A global evaluation of the JONSWAP spectra suitability on coastal areas[J].Ocean Engineering,2022,266(P2):112756.
BOCQUET S.Ocean wave autocorrelation function[J].Applied Mathematics and Computation,2022,426⁃432.
HAMIDZADEH H R,JAZAR R N.Vibrations of thick cylindrical structures[M].Boston:Springer US,2010:47-56.
0
浏览量
0
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构