您当前的位置:
首页 >
文章列表页 >
ROLLING BEARING FAULT DIAGNOSIS BASED ON VMD-CWT-CNN
更新时间:2024-06-07
    • ROLLING BEARING FAULT DIAGNOSIS BASED ON VMD-CWT-CNN

    • Journal of Mechanical Strength   Vol. 45, Issue 6, Pages: 1280-1285(2023)
    • 作者机构:

      重庆交通大学机电与车辆工程学院

    • DOI:10.16579/j.issn.1001.9669.2023.06.002    

      CLC: TH133.33
    • Published:15 December 2023

    扫 描 看 全 文

  • CHEN DaiJun, CHEN LiLi, DONG ShaoJiang. ROLLING BEARING FAULT DIAGNOSIS BASED ON VMD-CWT-CNN. [J]. Journal of Mechanical Strength 45(6):1280-1285(2023) DOI: 10.16579/j.issn.1001.9669.2023.06.002.

  •  
  •  

0

Views

792

下载量

0

CSCD

Alert me when the article has been cited
提交
Tools
Download
Export Citation
Share
Add to favorites
Add to my album

Related Articles

基于改进HHO-LSTM的滚动轴承故障诊断研究
FAULT DIAGNOSIS OF WIND TURBINE BEARING BASED ON SENET-RESNEXT-LSTM
基于Morlet小波与CART决策树的滚动轴承故障诊断方法
WIND TURBINE ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON 1D-CNN AND SWLSTM
改进MOMEDA方法及其在滚动轴承故障特征增强中的应用

Related Author

朱思佳
邵良杉
LI JianJun
ZHANG Chao
DU HaoFei
黄仲
李永健
张盈

Related Institution

辽宁工程技术大学系统工程研究所
辽宁工程技术大学工商管理学院
School of Information Engineering, Inner Mongolia University of Science & Technology
School of Mechanical Engineering, Inner Mongolia University of Science & Technology
西南交通大学牵引动力国家重点实验室
0