您当前的位置:
首页 >
文章列表页 >
FAULT DIAGNOSIS OF WIND TURBINE BEARING BASED ON SENET-RESNEXT-LSTM
更新时间:2024-06-07
    • FAULT DIAGNOSIS OF WIND TURBINE BEARING BASED ON SENET-RESNEXT-LSTM

    • Journal of Mechanical Strength   Vol. 45, Issue 6, Pages: 1271-1279(2023)
    • 作者机构:

      1. 内蒙古科技大学信息工程学院

      2. 内蒙古科技大学机械工程学院

    • DOI:10.16579/j.issn.1001.9669.2023.06.001    

      CLC: TH17;TP183
    • Published:15 December 2023

    扫 描 看 全 文

  • DU HaoFei, ZHANG Chao, LI JianJun. FAULT DIAGNOSIS OF WIND TURBINE BEARING BASED ON SENET-RESNEXT-LSTM. [J]. Journal of Mechanical Strength 45(6):1271-1279(2023) DOI: 10.16579/j.issn.1001.9669.2023.06.001.

  •  
  •  

0

Views

612

下载量

0

CSCD

Alert me when the article has been cited
提交
Tools
Download
Export Citation
Share
Add to favorites
Add to my album

Related Articles

基于改进HHO-LSTM的滚动轴承故障诊断研究
ROLLING BEARING FAULT DIAGNOSIS BASED ON VMD-CWT-CNN
WIND TURBINE ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON 1D-CNN AND SWLSTM
基于Morlet小波与CART决策树的滚动轴承故障诊断方法
改进MOMEDA方法及其在滚动轴承故障特征增强中的应用

Related Author

朱思佳
邵良杉
DONG ShaoJiang
CHEN LiLi
CHEN DaiJun
QUAN Zhe
CHEN YangHui
JING DongXing

Related Institution

辽宁工程技术大学系统工程研究所
辽宁工程技术大学工商管理学院
School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University
School of Information and Intelligence, Xiangxi National Vocational and Technical College
National Supercomputing Center of Changsha, College of Computer Science and Engineering, Hunan University
0