浏览全部资源
扫码关注微信
中国兵器科学研究院宁波分院,宁波 315103
KANG Jingjie, E-mail: kangjingjie23@163.com
Received:18 October 2023,
Revised:15 November 2023,
Published:15 May 2025
移动端阅览
康晶杰,张立君,孙远东,等. 基于颜色分割的螺栓松动角度检测方法[J].机械强度,2025,47(5):102-109.
KANG Jingjie,ZHANG Lijun,SUN Yuandong,et al. Bolt loosening angle detection method based on color segmentation[J]. Journal of Mechanical Strength,2025,47(5):102-109.
康晶杰,张立君,孙远东,等. 基于颜色分割的螺栓松动角度检测方法[J].机械强度,2025,47(5):102-109. DOI: 10.16579/j.issn.1001.9669.2025.05.012.
KANG Jingjie,ZHANG Lijun,SUN Yuandong,et al. Bolt loosening angle detection method based on color segmentation[J]. Journal of Mechanical Strength,2025,47(5):102-109. DOI: 10.16579/j.issn.1001.9669.2025.05.012.
为实现通过单帧图像对螺栓松动角度进行定量检测,设计了一种基于颜色分割和连通域特征处理的方法。首先,设计一种在Lab颜色空间下,对
a
分量先后进行非线性拉伸、归一化及最优阈值分割的方法来分割表征螺栓松动角度的红色防松线图像;其次,利用开运算对图像进行形态学操作;然后,通过计算防松线图像中连通域的几何矩确定其方向矢量;最后,通过四象限反正切函数确定螺栓松动角度。结果表明,检测算法能够实现通过单帧图像对螺栓松动角度进行精确测量,最大相对误差为1.80%,其精度满足工程实践需要,具有较强的工程应用价值。
To achieve quantitative detection of bolt loosening angles through single frame images
a method based on color segmentation and connected domain feature processing was designed. Firstly
a method for performing nonlinear stretching
normalization and optimal threshold segmentation on
a
component successively in the Lab color space was designed to segment and represent the red anti-loosening line image of the bolt loosen
ing angle. Secondly
the morphological operations were performed on the image by using the open operation. Then
the orientation vector of the connected domain in the anti-loose line image was determined by computing the geometric moments. Finally
the bolt loosening angle was determined through the four-quadrant arctangent function. The results demonstrate that the precise measurement of the bolt loosening angle through a single frame image can be achieved by this detection algorithm
with a maximal relative error of 1.80%
its accuracy meets the needs of engineering practice and has strong engineering application value.
杨洋 , 刘文光 , 王晓婷 , 等 . 静/动加载下单搭螺栓连接复合材料板的刚度变化规律 [J]. 推进技术 , 2022 , 43 ( 12 ): 311 - 317 .
YANG Yang , LIU Wenguang , WANG Xiaoting , et al . Stiffness change law of single-lap bolted joint composite plates under static/dynamic loading [J]. Journal of Propulsion Technology , 2022 , 43 ( 12 ): 311 - 317 . (In Chinese)
叶耀坤 , 丁锋 , 李晓刚 , 等 . 某航天器火工装置作动后壳体滞后裂纹机理研究 [J]. 宇航总体技术 , 2022 , 6 ( 5 ): 40 - 48 .
YE Yaokun , DING Feng , LI Xiaogang , et al . Research on shell hysteresis crack of a pyrotechnics used on spacecraft [J]. Astronautical Systems Engineering Technology , 2022 , 6 ( 5 ): 40 - 48 . (In Chinese)
王国亮 , 易小冬 , 谢清程 , 等 . 调距桨叶根螺栓空泡损伤研究 [J]. 船舶工程 , 2021 , 43 ( 12 ): 110 - 114 .
WANG Guoliang , YI Xiaodong , XIE Qingcheng , et al . Research about cavitation damage of CPP blade bolt [J]. Ship Engineering , 2021 , 43 ( 12 ): 110 - 114 . (In Chinese)
唐云岗 . 可分离铰接式坦克越壕性能仿真研究 [D]. 长沙 : 中南大学 , 2009 : 58 - 67 .
TANG Yungang . Simulation study on trench crossing performance of separable articulated tank [D]. Changsha : Central South University , 2009 : 58 - 67 . (In Chinese)
罗敏 . 一起桥梁检测车事故原因分析 [J]. 特种设备安全技术 , 2022 ( 5 ): 67 - 68 .
LUO Min . Cause analysis of an accident of bridge inspection vehicle [J]. Safety Technology of Special Equipment , 2022 ( 5 ): 67 - 68 . (In Chinese)
田静 , 崔萍 , 张远琴 , 等 . 一起电动单梁起重机部件坠落伤人事故分析 [J]. 西部特种设备 , 2022 , 5 ( 4 ): 63 - 66 .
TIAN Jing , CUI Ping , ZHANG Yuanqin , et al . Analysis of an electric single beam crane component falling injury accident [J]. Western Special Equipment , 2022 , 5 ( 4 ): 63 - 66 . (In Chinese)
彭凌云 , 韩虎 . 关于风电机组检修维护的要点讨论 [J]. 机电产品开发与创新 , 2022 , 35 ( 6 ): 173 - 176 .
PENG Lingyun , HAN Hu . Discourse upon the key points of overhaul and maintenance of wind turbine [J]. Development & Innovation of Machinery & Electrical Products , 2022 , 35 ( 6 ): 173 - 176 . (In Chinese)
管春玲 , 周金龙 , 卢俊业 , 等 . 列车检修停靠状态下底板螺栓缺陷自动检测研究 [J]. 电子技术与软件工程 , 2021 ( 18 ): 81 - 82 .
GUAN Chunling , ZHOU Jinlong , LU Junye , et al . Research on automatic detection of bottom plate bolt defects under the condition of train maintenance and parking [J]. Electronic Technology & Software Engineering , 2021 ( 18 ): 81 - 82 . (In Chinese)
PARK J H , KIM T H , LEE K S , et al . Novel bolt-loosening detection technique using image processing for bolt joints in steel bridges [C]// Proceedings of the 2015 World Congress on Advances in Structural Engineering and Mechanics (ASEM15 ), August 25-29,2015 , Incheon,Korea . [S.l.] : International Association of Structural Engineering & Mechanics , 2015 : 1 - 19 .
PARK J H , HUYNH T C , CHOI S H , et al . Vision-based technique for bolt-loosening detection in wind turbine tower [J]. Wind and Structures , 2015 , 21 ( 6 ): 709 - 726 .
CHA Y J , YOU K , CHOI W . Vision-based detection of loosened bolts using the Hough transform and support vector machines [J]. Automation in Construction , 2016 , 71 : 181 - 188 .
NGUYEN T C , HUYNH T C , RYU J Y , et al . Bolt-loosening identification of bolt connections by vision image-based technique [J]. Proceedings of SPIE-The International Society for Optical Engineering , 2016 , 9804 : 980413 .
LIU Y , HUO L S , SONG G B . Automatic detection on the bolt loose based on digital image processing [C]// Proceedings of the 2018 World Congress on Advances in Civil , Environmental & Materials Research (Structures 18 ), August 27-31,2018 , Songdo Convensia,Incheon , South Korea , 2018 : 1 - 22 .
周靖 , 刘煜 , 霍林生 . 基于机器视觉的螺栓松动旋转角度测量 [J]. 机械设计与研究 , 2021 , 37 ( 4 ): 159 - 162 .
ZHOU Jing , LIU Yu , HUO Linsheng . Machine vision-based rotation angle measurement of bolt looseness [J]. Machine Design and Research , 2021 , 37 ( 4 ): 159 - 162 . (In Chinese)
XIE Y X , SUN J H . On-line bolt-loosening detection method of key components of running trains using binocular vision [C]// LIDAR Imaging Detection and Target Recognition 2017 . SPIE , 2017 : 1060513 .
ZHAO X F , ZHANG Y , WANG N N . Bolt loosening angle detection technology using deep learning [J]. Structural Control and Health Monitoring , 2019 , 26 ( 1 ): 2292 .
RAMANA L , CHOI W , CHA Y J . Fully automated vision-based loosened bolt detection using the Viola-Jones algorithm [J]. Structural Health Monitoring , 2019 , 18 ( 2 ): 422 - 434 .
陈健雄 , 宁航 . 基于YOLO v2与OTSU的中低速磁浮接触轨连接板螺钉松动识别 [J]. 计算机与现代化 , 2019 ( 9 ): 118 - 121 .
CHEN Jianxiong , NING Hang . Connecting plate screw loosening recognition of medium and low speed maglev contact rail based on YOLO v2 and OTSU [J]. Computer and Modernization , 2019 ( 9 ): 118 - 121 . (In Chinese)
PAN X , YANG T Y . Image‐based monitoring of bolt loosening through deep‐learning‐based integrated detection and tracking [J]. Computer‐Aided Civil and Infrastructure Engineering , 2022 , 37 ( 10 ): 1207 - 1222 .
SUN Y , LI M , DONG R , et al . Vision-based detection of bolt loosening using YOLOv5 [J]. Sensors , 2022 , 22 ( 14 ): 5184 .
YU Y , LIU Y , CHEN J , et al . Detection method for bolted connection looseness at small angles of timber structures based on deep learning [J]. Sensors , 2021 , 21 ( 9 ): 3106 .
GONG H , DENG X J , LIU J H , et al . Quantitative loosening detection of threaded fasteners using vision-based deep learning and geometric imaging theory [J]. Automation in Construction , 2022 , 133 : 104009 .
黄德青 , 倪思杰 , 秦娜 . 一种基于防松线识别的列车螺栓松动检测方法 : CN113469966A [P]. 2021-10-01 .
HUANG Deqing , NI Sijie , QIN Na . A method of loosening a trains based on anti-pine recognition : CN113469966A [P]. 2021-10-01 . (In Chinese)
YANG M L , LUO L Z , TAO M L . Efficient rail repair machine based on image recognition technology [J]. Journal of Physics: Conference Series , 2020 , 1486 ( 4 ): 042023 .
SONG D Y , XU X , CUI X P , et al . Bolt looseness detection based on Canny edge detection algorithm [J]. Concurrency and Computation: Practice and Experience , 2023 : 7713 .
YANG R , GUAN Z L , LU J , et al . Bolt looseness detection algorithm based on 2D color space extraction and 3D depth measurement [C]// 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA) . New York : IEEE , 2022 : 491 - 497 .
DENG X J , LIU J H , GONG H , et al . Detection of loosening angle for mark bolted joints with computer vision and geometric imaging [J]. Automation in Construction , 2022 , 142 : 104517 .
ZHENG X , LEI Q Y , YAO R , et al . Image segmentation based on adaptive K-means algorithm [J]. EURASIP Journal on Image and Video Processing , 2018 , 2018 : 68 .
International Electrotechnical Commission . Multimedia systems and equipment-colour measurement and management-part 2-1:colour management-Default RGB colour space-sR GB: IEC 61966-2-1:1999/AMD1:2003 CSV [S]. Geneva : International Electrotechnical Commission , 2003 : 9 - 10 .
OTSU N . A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems ‘Man’ and Cybernetics , 1979 , 9 ( 1 ): 62 - 66 .
GONZALEZ R C , WOODS R E . Digital image processing [M]. 4th ed . London : Pearson Group , 2018 : 487 - 488 .
HU M K . Visual pattern recognition by moment invariants [J]. IEEE Transactions on Information Theory , 1962 , 8 ( 2 ): 179 - 187 .
MathWorks . atan2-Four-quadrant inverse tangent [EB/OL]. https://ww2.mathworks.cn/help/matlab/ref/atan2.html?s_tid=srchtitle_atan2_1 https://ww2.mathworks.cn/help/matlab/ref/atan2.html?s_tid=srchtitle_atan2_1 .
王前选 , 王锐锋 , 李虎 , 等 . 轨道车辆螺栓松动量与预紧力视觉检测方法研究 [J]. 铁道科学与工程学报 , 2023 , 20 ( 9 ): 3511 - 3524 .
WANG Qianxuan , WANG Ruifeng , LI Hu , et al . Research on visual detection method of rail vehicle bolt looseness and pre-tightening force [J]. Journal of Railway Science and Engineering , 2023 , 20 ( 9 ): 3511 - 3524 . (In Chinese)
QI Y Z , LI P Z , XIONG B , et al . A two-step computer vision-based framework for bolt loosening detection and its implementation on a smartphone application [J]. Structural Health Monitoring , 2022 , 21 ( 5 ): 2048 - 2062 .
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution