NIU Fanggan,MA Wenyuan,YANG Chao,et al. Wing structural design of supersonic civil aircraft based on deep neural network[J]. Journal of Mechanical Strength,2025,47(4):122-130.
NIU Fanggan,MA Wenyuan,YANG Chao,et al. Wing structural design of supersonic civil aircraft based on deep neural network[J]. Journal of Mechanical Strength,2025,47(4):122-130. DOI: 10.16579/j.issn.1001.9669.2025.04.015.
Wing structural design of supersonic civil aircraft based on deep neural network
the research on supersonic civil aircraft wings mainly focuses on the low sonic boom design and supersonic drag reduction technologies. There are relatively few studies on the wing structural design. Therefore
a multi-level optimization method for the wing structural design in the preliminary design stage of supersonic civil aircrafts was proposed. It included the parametric modeling of the wing structural layout
the automatic generation of the finite element model for the structural size optimization
construction and training of a surrogate model for the deep neural network. And the optimization was solved based on the deep neural network. The analysis results show that the proposed optimization strategy could quickly design the wing structure of the supersonic civil aircraft. The deep neural network model has higher prediction accuracy than the traditional surrogate model. Thus
the proposed approach can improve the efficiency of the preliminary design for wing structure.
关键词
Keywords
references
CHUDOBA B , COLEMAN G , ROBERTS K , et al . What price supersonic speed?A design anatomy of supersonic transportation-part 1 [C]// 45th AIAA Aerospace Sciences Meeting . Reston : AIAA , 2007 , 15 : 10355 - 10378 .
CANDEL S . Concorde and the future of supersonic transport [J]. Journal of Propulsion and Power , 2004 , 20 ( 1 ): 59 - 68 .
PEIREN G . Tu-144 supersonic transport [J]. Civil Aircraft Design and Research , 2015 ( 3 ): 99 - 102 .
CONWAY E M . High-speed dreams:NASA and the technopolitics of supersonic transportation,1945-1999 [M]. Baltimore : Johns Hopkins University Press , 2005 : 866 - 867 .
LIEBHARDT B , LÜTJENS K , UENO A , et al . JAXA’s S4 supersonic low-boom airliner-a collaborative study on aircraft design,sonic boom simulation,and market prospects [C]// AIAA Aviation 2020 Forum . Reston : AIAA , 2020 : 241349 .
MICHAEL B . Conceptual design of a quiet supersonic technology airliner [C]// AIAA Aviation 2019 Forum . Reston : AIAA , 2019 : 11 - 18 .
MAGEE T E , SERRANO L , MENDOZA R , et al . X-59 CFD and wind tunnel data comparisons [C]// AIAA Aviation 2023 Forum . Reston : AIAA , 2023 : 313279 .
DING Yulin , HAN Zhonghua , QIAO Jianling , et al . Research progress in key technologies for conceptual-aerodynamic configuration design of supersonic transport aircraft [J]. Acta Aeronautica et Astronautica Sinica , 2023 , 44 ( 2 ): 20 - 46 . (In Chinese)
YUAN Jishen , SUN Jue , LI Lingyu , et al . Progress of supersonic aircraft laminar flow layout design and evalution technologies [J]. Acta Aeronautica et Astronautica Sinica , 2022 , 43 ( 11 ): 63 - 98 . (In Chinese)
SERAJ S , MARTINS J R R A . Aerodynamic shape optimization of a supersonic transport considering low-speed stability [C]// AIAA Sciece and Technology Forum and Exposition , AIAA Sci Tech Forum 2022 . Reston : AIAA ,2022: 270339 .
LI W , GEISELHART K . Integration of low-fidelity MDO and CFD-Based redesign of low-boom supersonic transports [J]. AIAA Journal , 2021 , 59 ( 10 ): 3923 - 3936 .
ESPINAL D , IM H , LEE B , et al . Supersonic bi-directional flying wing,Part II:conceptual design of a high speed civil transport [C]// 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition . Reston : AIAA , 2010 : 82585 .
MELLQUIST E C , BENDIKSEN O O . Analysis of the transonic flutter of supersonic transport wings [C]// 56th AIAA/ASCE/AHS/ASC Structures , Structural Dynamics,and Materials Conference 2015 . Reston : AIAA ,2015: 112819 .
TANG Jiadong , LOU Bin , YE Shangjun , et al . Hybrid optimization design of wing structure based on convolution neural network and squirrel search algorithm [J]. Chinese Quarterly of Mechanics , 2022 , 43 ( 2 ): 217 - 226 . (In Chinese)
QU Jingguo , PENG Bo , YI Xian , et al . Icing prediction method for arbitrary airfoil using deep neural networks [J]. Acta Aerodynamica Sinica , 2023 , 41 ( 7 ): 48 - 55 . (In Chinese)
DENG L , WANG Y Q , LIU Y , et al . A CNN-based vortex identification method [J]. Journal of Visualization , 2019 , 22 ( 1 ): 65 - 78 .
SÁNCHEZ-SÁNCHEZ C , IZZO D . Real-time optimal control via deep neural networks:study on landing problems [J]. Journal of Guidance,Control,and Dynamics , 2018 , 41 ( 5 ): 1122 - 1135 .
LIU Lei . Research on weight estimation method of aerospace aircraft [D]. Nanjing : Nanjing University of Aeronautics and Astronautics , 2016 : 43 - 44 . (In Chinese)
Google . TensorFlow: an end-to-end source machine learning platform [EB/OL]. ( 2019-08-10 ). https://opensource.google/projects/tensorflow https://opensource.google/projects/tensorflow .
NAIR V , HINTON G E . Rectified linear units improve restricted Boltzmann machines [C]// 27th International Conference on Machine Learning ICML 2010 , 2010 : 81654(807-814 .
NEWEY W K . Adaptive estimation of regression models via moment restrictions [J]. Journal of Econometrics , 1988 , 38 ( 3 ): 301 - 339 .
FAN Zhouwei , YU Xiongqing , WANG Chao , et al . Sensitivity analysis of key design parameters of commercial aircraft using deep neural network [J]. Acta Aeronautica et Astronautica Sinica , 2021 , 42 ( 4 ): 524353 . (In Chinese)
LOFFE S , SZEGEDY C . Batch normalization:accelerating deep network training by reducing internal covariate shift [C]// 32nd International Conference on Machine Learning , ICML 2015 . 2015 , 1 : 119782(448-456 .
BOUHLEL M A , HWANG J T , BARTOLI N , et al . A Python surrogate modeling framework with derivatives [J]. Advances in Engineering Software , 2019 , 135 : 102662 .