浏览全部资源
扫码关注微信
1.中国飞机强度研究所 强度与结构完整性全国重点实验室,西安 710065
2.北京航空航天大学 航空科学与工程学院,北京 100191
WANG Zhigang, E-mail: wangzhigang623@buaa.edu.cn.
Published:15 January 2025,
Received:08 March 2023,
Revised:22 April 2023,
移动端阅览
WU QI, YANG YU, LU YIFEI, et al. Characterization of a reversible-assembly mechanical metamaterial with an adjustble mechanical property. [J]. Journal of mechanical strength, 2025, 47(1): 92-106.
WU QI, YANG YU, LU YIFEI, et al. Characterization of a reversible-assembly mechanical metamaterial with an adjustble mechanical property. [J]. Journal of mechanical strength, 2025, 47(1): 92-106. DOI: 10.16579/j.issn.1001.9669.2025.01.011.
点阵结构因其高比强度和比刚度成为航空、航天、汽车等领域的研究热点。增材制造技术的发展使得具有复杂几何外形和特殊力学性能的力学超材料点阵结构的加工成为可能。但传统增材制造工艺难以协调此类结构在成本、几何尺寸和精度之间的矛盾。鉴于此,提出了一种可逆装配的力学超材料结构概念及基础体素结构的连接方法,可有效克服制造装备的尺寸限制,并可以通过不同排列组合构建力学性能丰富的宏观点阵结构。针对可逆装配的基础体素型式,通过参数化建模的方法分析了体素几何特征、相对密度和体素数目等参数对其力学性能的影响,并与实验结果进行了对比。结果表明,所提出的3种基础体素刚性差异较大,泊松比覆盖了由负到正的范围。因此,使用这3种基础体素的不同组合方式可以产生不同力学性能分布的宏观结构,从而证明了采用这3种体素作为可逆装配结构基本体素的合理性。此外,所给出的几何尺寸与力学性能之间的数学关系可为此类力学超材料的工程应用提供指导。
Lattice structures have become a research highlight in the fields of aviation
aerospace and automobile because of its high specific strength and stiffness. The development of additive manufacturing technology makes it possible to manufacture mechanical metamaterials with complex geometric shapes and special mechanical properties. However
traditional additive manufacturing processes are difficult to coordinate the contradiction between the cost
geometric size and accuracy of such structures.In view of this
a mechanical metamaterial structure concept of reversible assembly and the connection method of its basic voxels were proposed
which can effectively overcome the size limitation of manufacturing equipment
and can construct a macro lattice structure with rich mechanical properties through different combination sequences. Aiming at the basic voxel type of reversible assembly
the influence of voxel geometric parameters
relative density and voxel numbers on its mechanical properties through parametric modeling method was analyzed
and the experimental results were compared. The results show that the three basic voxels have great rigidity difference
and Poisson’s ratio covers the range from negative to positive.Therefore
different combination sequences of these three basic voxels can produce macro structures with different mechanical property distributions
which proves the rationality of using these three basic voxels as the basic voxels of the reversible-assembly structure.In addition
the mathematical relationship between geometric parameters and mechanical properties can provide guidance for the engineering application of such mechanical metamaterials.
可逆装配力学超材料参数化建模点阵结构性能表征
Reversible assemblyMechanical metamaterialsParametric modelingLattice structurePerformance characterization
吴文旺,夏热.轻质点阵超结构设计及多功能力学性能调控方法[J].力学进展,2022,52(3):673-718.
WU Wenwang,XIA Re.Design of lightweight lattice meta-structures and approaches to manipulate their multi-functional mechanical properties[J].Advances in Mechanics,2022,52(3):673-718.(In Chinese)
ZHENG X,LEE H,WEISGRABER T H,et al.Ultralight,ultrastiff mechanical metamaterials[J].Science,2014,344(6190):1373-1377.
DONG L,DESHPANDE V,WADLEY H.Mechanical response of Ti6Al4V octet-truss lattice structures[J].International Journal of Solids and Structures,2015,60:107-124.
CHEUNG K C,GERSHENFELD N.Reversibly assembled cellular composite materials[J].Science,2013,341(6151):1219-1221.
ZHANG J J,LU G X,YOU Z.Large deformation and energy absorption of additively manufactured auxetic materials and structures:a review[J].Composites Part B:Engineering,2020,201:108340.
DEL OLMO E,GRANDE E,SAMARTIN C R,et al.Lattice structures for aerospace applications[C]//12th European Conference on Spacecraft Structures,Materials and Environmental Testing,2012,691:6.
CRAMER N B,CELLUCCI D W,FORMOSO O B,et al.Elastic shape morphing of ultralight structures by programmable assembly[J].Smart Materials and Structures,2019,28(5):055006.
ALSAIDI B,JOE W Y,AKBAR M.Computational analysis of 3D lattice structures for skin in real-scale camber morphing aircraft[J].Aerospace,2019,6(7):79-94.
SPADONI A,RUZZENE M.Static aeroelastic response of chiral-core airfoils[J].Journal of Intelligent Material Systems and Structures,2007,18(10):1067-1075.
FASEL U,KEIDEL D,BAUMANN L,et al.Composite additive manufacturing of morphing aerospace structures[J].Manufacturing Letters,2020,23:85-88.
王晓燕.金属加工领域的3D打印产业发展情况[J].金属加工(热加工),2020(7):11-15.
WANG Xiaoyan.The development of 3D printing industry in the field of metal processing[J].Machinist Metal Forming(Hot Working),2020(7):11-15.(In Chinese)
VASILIEV V V,RAZIN A F.Spacecraft and aircraft applications[J].Composite Structures,2006,76(1/2):182-189.
ZHANG L,SONG B,FU J J,et al.Topology-optimized lattice structures with simultaneously high stiffness and light weight fabricated by selective laser melting:design,manufacturing and characterization[J].Journal of Manufacturing Processes,2020,56:1166-1177.
LIU J,CHEN T T,ZHANG Y H,et al.On sound insulation of pyramidal lattice sandwich structure[J].Composite Structures,2019,208:385-394.
WANG X,WANG C,ZHOU X,et al.Evaluating lattice mechanical properties for lightweight heat-resistant load-bearing structure design[J].Materials(Basel),2020,13(21):4786.
尹剑飞,蔡力,方鑫,等.力学超材料研究进展与减振降噪应用[J].力学进展,2022,52(3):508-586.
YIN Jianfei,CAI Li,FANG Xin,et al.Review on research progress of mechanical metamaterials and their applications in vibration and noise control[J].Advances in Mechanics,2022,52(3):508-586.(In Chinese)
MEAD D M.Wave propagation in continuous periodic structures:research contributions from southampton,1964-1995[J].Journal of Sound and Vibration,1996,190(3):495-524.
NGO T D,KASHANI A,IMBALZANO G,et al.Additive manufacturing (3D printing):a review of materials,methods,applications and challenges[J].Composites Part B:Engineering,2018,143:172-196.
ZHANG X J,XUE Z P,CHENG Q T,et al.Optimization design of variable density lattice structure for additive manufacturing[J].Energy,2022,242:122554.
NAGESHA B K,DHINAKARAN V,VARSHA SHREE M,et al.Review on characterization and impacts of the lattice structure in additive manufacturing[J].Materials Today:Proceedings,2020,21:916-919.
JENETT B,CAMERON C,TOURLOMOUSIS F,et al.Discretely assembled mechanical metamaterials[J].Science Advances,2020,6(47):eabc9943.
HUANG J,QIN Q,WANG J.A review of stereolithography:processes and systems[J].Processes,2020,8(9):1138-1159.
BOCHMANN L,BAYLEY C,HELU M,et al.Understanding error generation in fused deposition modeling[J].Surface Topography:Metrology and Properties,2015,3(1):014002.
DUTY C E,KUNC V,COMPTON B,et al.Structure and mechanical behavior of Big Area Additive Manufacturing (BAAM) materials[J].Rapid Prototyping Journal,2017,23(1):181-189.
KHOSHNEVIS B,HWANG D,YAO K T,et al.Mega-scale fabrication by contour crafting[J].International Journal of Industrial and Systems Engineering,2006,1(3):301-320.
ZHANG X,LI M Y,LIM J H,et al.Large-scale 3D printing by a team of mobile robots[J].Automation in Construction,2018,95:98-106.
GERSHENFELD N,CARNEY M,JENETT B,et al.Macrofabrication with digital materials:robotic assembly[J].Architectural Design,2015,85(5):122-127.
GREGG C E,KIM J H,CHEUNG K C.Ultra‐light and scalable composite lattice materials[J].Advanced Engineering Materials,2018,20(9):1800213.
JENETT B,CALISCH S,CELLUCCI D,et al.Digital morphing wing:active wing shaping concept using composite lattice-based cellular structures[J].Soft Robot,2017,4(1):33-48.
苏成帅.高孔隙率金属材料微尺度辐射特性研究[D].哈尔滨:哈尔滨工业大学,2017:3.
SU Chengshuai.Study on micro-scale radiation characteristics of high porosity metal materials[D].Harbin:Harbin Institute of Technology,2017:3.(In Chinese)
XU B,YIN S,WANG Y,et al.Long-fiber reinforced thermoplastic composite lattice structures:fabrication and compressive properties[J].Composites Part A:Applied Science and Manufacturing,2017,97:41-50.
CHEUNG K,CELLUCCI D,COPPLESTONE G,et al.Development of mission adaptive digital composite aerostructure technologies (MADCAT)[C]//17th AIAA Aviation Technology,Integration,and Operations Conference,2017:4273.
MAJJI M,REDINIOTIS O,JUNKINS J.Design of a morphing wing:modeling and experiments[C]//AIAA Atmospheric Flight Design of a Morphing Wing:Mechanics Conference and Exhibit,2007:6310.
BILGEN O,BUTT L M,DAY S R,et al.A novel unmanned aircraft with solid-state control surfaces:analysis and flight demonstration[J].Journal of Intelligent Material Systems and Structures,2013,24(2):147-167.
PARADIES R,CIRESA P.Active wing design with integrated flight control using piezoelectric macro fiber composites[J].Smart Materials and Structures,2009,18(3):035010.
DESHPANDE V S,ASHBY M F,FLECK N A.Foam topology:bending versus stretching dominated architectures[J].Acta Materialia,2001,49(6):1035-1040.
FLECK N A,DESHPANDE V S,ASHBY M F.Micro-architectured materials:past,present and future[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2010,466(2121):2495-2516.
沈展鹏,陈海波.细长梁结构振动模态的分析方法研究[C]//中国计算力学大会2010(CCCM2010)暨第八届南方计算力学学术会议(SCCM8)论文集,2010:197.
SHEN Zhanpeng,CHEN Haibo.Study on vibration mode analysis method of thin beam Structure[C]// Proceedings of China Conference on Computational Mechanics 2010(CCCM2010) and the 8th South China Conference on Computational Mechanics (SCCM8),2010:197.(In Chinese)
WANG Z P,POH L H.Optimal form and size characterization of planar isotropic petal-shaped auxetics with tunable effective properties using IGA[J].Composite Structures,2018,201:486-502.
GIBSON L J.Cellular solids[J].Mrs Bulletin,2003,28(4):270-274.
DESHPANDE V S,FLECK N A,ASHBY M F.Effective properties of the octet-truss lattice material[J].Journal of the Mechanics and Physics of Solids,2001,49(8):1747-1769.
郭辰光,李威力,李源,等.铺层取向对光敏树脂固化快速成型构件力学性能影响[J].塑料工业,2016,44(3):111-114.
GUO Chenguang,LI Weili,LI Yuan,et al.Influence of different plyorientations on mechanical properties of rapid prototyping structure by photosensitive resin curing[J].China Plastics Industry,2016,44(3):111-114.(In Chinese)
赵杰,李伶,沈涛,等.光固化3D打印中光敏树脂的研究进展[J].山东陶瓷,2021,44(5):15-19.
ZHAO Jie,LI Ling,SHEN Tao,et al.Research progress of UV curable ceramic photosensitive resin for 3D printing [J].Shandong Ceramics,2021,44(5):15-19.(In Chinese)
0
Views
0
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution